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I. Introduction
The capacity of boron to catenate and form self-

bonded complex molecular networks is as extensive
as any element except for carbon. However, the
principles of structure and bonding in the binary
compounds of boron and hydrogen, namely, the
boranes, are so different from those of hydrocarbons
that hydrocarbon chemistry has historically provided
very little guidance for the understanding of borane
chemistry. The high reactivity of the neutral boranes
required the development of special techniques for
handling them by Alfred Stock1 before any of their
formulas could be reliably determined.

This pioneering work of Stock led to the identifica-
tion of the neutral boron hydrides B2H6, B4H10, B5H9,
B5H11, and B6H10 as toxic and air- and water-sensitive
gases or volatile liquids as well as the more stable
volatile solid B10H14 (Figure 1). However, even after
the unambiguous identification of these substances,
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which clearly provided an indication of the catenation
ability of boron in molecular compounds, there re-
mained the question of their structure and bonding.
This dilemma was most apparent in the simplest
boron hydride diborane, B2H6, which has the stoichi-
ometry of the hydrocarbon ethane, C2H6, but two
electrons fewer. In addition, for a long time it was
not clear why BF3, BCl3, and B(CH3)3 were stable as
monomers with apparently trivalent boron whereas
BH3 dimerizes spontaneously to B2H6.

The structure of diborane now known to be correct,
namely, B2H4(µ-H)2 (Figure 1), was first predicted by
Dilthey2 in 1921 but only considered seriously in the
early 1940s after evidence supporting this structure
was obtained from infrared spectra.3,4 However, even
after some initial experimental data relating to the
structure of diborane became available, some impor-
tant members of the chemical community were
reluctant to accept the B2H4(µ-H)2 structure, which
involved ideas of chemical bonding unprecedented at
that time. For example, correspondence made public
only recently5 show that even Linus Pauling as late
as 1945 preferred an ethane-like H3B-BH3 structure
for diborane rather than the correct B2H4(µ-H)2
structure. However, the correct B2H4(µ-H) structure
for diborane was subsequently confirmed beyond any
reasonable doubt by electron-diffraction studies6 and
low-temperature X-ray diffraction work.7 Consider-
ation of the chemical bonding in the correct diborane
structure first led to the concept of the “protonated
double bond”, initially proposed by Pitzer8 in 1945.

Subsequent work by Lipscomb and collaborators9 led
in 1954 to the concept of three-center two-electron
(3c-2e) bonding (Figure 2), which in the case of
diborane consists of two 3c-2e B-H-B bonds involv-
ing the bridging hydrogen atoms. Further theoretical
work by Lipscomb7 led to the topological models for
the structures of all of the known boranes in which
3c-2e B-H-B bonds are key building blocks. Initially
Lipscomb7 proposed that the structures of all of the
then known neutral boron hydrides (Figure 1) were
based on icosahedral fragments except for B5H9,
whose square pyramidal structure was clearly de-
rived from an octahedron by removal of a single
vertex. Eventually, after considerable additional
experimental information became available, Wil-
liams10 corrected this suggestion of Lipscomb in a
seminal paper describing the “most spherical” delta-
hedra which are the key structural units in boron
structures containing boron polyhedra or polyhedral
fragments.

Chemically bonded aggregates of boron atoms are
found not only in molecular boranes, but also in solid-
state borides. Pioneering X-ray diffraction structural
work by Allard11 and by Pauling and Weinbaum12 in
the 1930s indicated the presence of regular octahedra
of boron atoms in several metal hexaborides of the
general formula MB6. This very early work repre-
sents the first experimental demonstration of closed
boron polyhedra in a chemical structure. In subse-
quent related work, Longuet-Higgins and Roberts13

used molecular orbital theory to show that the [B6]2-

ion had a “closed-shell” arrangement of high stability
and predicted that divalent metal borides of the type
MB6 should be insulators whereas hexaborides in
which the metal ion has a higher charge should
exhibit metallic conductivity. Their predictions were
in accord with experimental evidence. Longuet-Hig-
gins and Roberts14 then used a similar approach to
study icosahedra of boron atoms, a dominant struc-
tural feature of the various allotropes of solid ele-
mental boron.15 Their work14 indicated that a B12
icosahedron has 13 bonding orbitals available for
holding the icosahedron together (such orbitals have
subsequently been called skeletal orbitals) in addition
to the 12 outward pointing equivalent orbitals, i.e.,
the external orbitals, on the separate boron atoms.
A conclusion of this work was that a borane of
formula B12H12 would be stable only as a dianion
B12H12

2-. This prediction was verified experimentally
by Hawthorne and Pitochelli in 1960,16 one year after
they had prepared salts of the borane anion17 B10H10

2-.
Both of these anions were significantly more chemi-
cally and thermally stable than any previously

Figure 1. The six boranes originally characterized by
Stock.

Figure 2. Comparison of 2c-2e B-B and 3c-2e B-B-B
bonding.

1120 Chemical Reviews, 2001, Vol. 101, No. 5 King



known B-H derivatives. Determination of their
structures by X-ray diffraction indicated closed poly-
hedral structures for both of these anions with
B12H12

2- being a regular icosahedron18 and B10H10
2-

a bicapped square antiprism of D4d idealized sym-
metry.19 Subsequent work led to the syntheses of
salts of the analogous anions B11H11

2- (ref 20), B9H9
2-

(ref 20), B8H8
2- (ref 21), B7H7

2- (ref 21), and B6H6
2-

(ref 22). Structural determinations on these borane
anions by X-ray diffraction indicated in all cases the
presence of boron polyhedra in which all of the faces
are triangles (Figure 3). Such polyhedra are con-
veniently called deltahedra. Furthermore, the ver-
tices in all of these experimentally observed borane
deltahedra with one exception were found to have
degrees 4 or 5, where the degree of a vertex is the
number of edges meeting at that vertex. The one
exception was the presence of a single degree 6 vertex
in the 11-vertex deltahedron found in B11H11

2-.
Subsequent work by King and Duijvestijn23 provided
proof of the nontrivial fact that an 11-vertex delta-
hedron cannot be constructed with only degree 4 and
5 vertices; at least one degree 6 vertex is necessary.
The stoichiometry of the stable borane anion delta-
hedra BnHn

2- (6 e n e 12) corresponds to the
presence of n + 1 skeletal bonding orbitals leading
to 2n + 2 skeletal electrons.24,25,26,27

Related deltahedral structures are exhibited by
neutral ternary compounds of carbon, boron, and
hydrogen of the general formula C2Bn-2Hn known as
carboranes.28 The first carboranes to be discovered

were C2B3H5, C2B4H6, and C2B5H7, whose structures
were deduced to contain C2Bn-2 deltahedra, i.e., the
trigonal bipyramid, octahedron, and pentagonal bi-
pyramid for n ) 5, 6, and 7, respectively.29 Subse-
quent work led to the discovery of the three isomers
of the regular icosahedral C2B10H12 (often known as
the ortho, meta, and para isomers by analogy to the
three types of disubstituted benzene).30,31 The neutral
deltahedral carboranes C2Bn-2Hn are clearly isoelec-
tronic with the corresponding deltahedral borane
dianions BnHn

2- through the isoelectronic substitu-
tion of C by B-, and many of the corresponding
monoanionic monocarbon carboranes CBn-1Hn

- have
subsequently been prepared. The only unusual fea-
ture of this deltahedral borane-carborane isoelec-
tronic relationship is that B5H5

2- isoelectronic with
the known29 C2B3H5 has never been prepared despite
numerous attempts.

The compounds containing boron deltahedra, wheth-
er borane anions BnHn

2-, the isoelectronic carboranes
C2Bn-2Hn, or metal borides containing boron delta-
hedra, are characterized by unusual stability com-
pared with the reactive and frequently unstable
neutral boron hydrides such as those originally
obtained by Stock.1 The compounds with boron icosa-
hedra appear to be the most stable and least chemi-
cally reactive of the deltahedral boron species as
indicated, for example, by the stability of the C2B10H12
isomers at temperatures around 500 °C, the low
toxicity of B12H12

2- salts of unreactive countercations,
and the refractory nature of elemental boron and
metal borides containing B12 icosahedra. This sug-
gests that the concept of aromaticity, originally
developed for two-dimensional polygonal molecules
and ions to account, for example, for the unusual
stability of benzene relative to polyolefins, might be
extended to three-dimensional polyhedral molecules
and ions to account for the unusual stability of
deltahedral boranes and carboranes relative to boron
hydrides having open structures, e.g., the original
neutral binary boron hydrides discovered by Stock
(Figure 1).1 An explicit suggestion of three-dimen-
sional aromaticity in deltahedral boranes was made
by Aihara32 in 1978, who used a graph-theoretical
method to find significant positive resonance energies
for deltahedral BnHn

2- (6 e n e 12) with the experi-
mentally very stable B12H12

2- having the highest
resonance energy. Meanwhile, King and Rouvray33

used methods also derived from graph theory to
demonstrate the analogy between the delocalization
in two-dimensional planar polygonal aromatic hy-
drocarbons such as benzene and that in three-
dimensional deltahedral boranes. Shortly thereafter,
Stone and Alderton34 approximated borane delta-
hedra by spheres so that tensor surface harmonic
theory mathematically similar to that used to gener-
ate atomic orbitals for (spherical) atoms could be used
to generate the skeletal molecular orbitals for borane
deltahedra. This review summarizes these and other
approaches to the chemical bonding in deltahedral
boranes and related species showing how the concept
of aromaticity originally developed for two-dimen-
sional carbon compounds can be extended to the third
dimension in boron chemistry.

Figure 3. The most spherical deltahedra found in the
boranes BnHn

2- (6 e n e 12) and related compounds.
Degree 4 vertices are indicated by a solid box (9), and
degree 6 vertices are indicated by an asterisk (*).
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II. Topological Aspects of the Chemical Bonding
in Boranes

A. Three-Center Bonding in Boranes: Lipscomb’s
Topological Models

The feature of particular interest distinguishing
three-dimensional boranes from two-dimensional pla-
nar hydrocarbons is the presence of three-center
bonds. In the usual 2c-2e covalent bond, two atoms
supply two orbitals, one centered on each atom. These
atomic orbitals interact to form one bonding orbital
and one antibonding orbital so that if two electrons
are available, they will just fill the bonding orbitals
and constitute the standard covalent bond such as
the C-C and C-H σ-bonds typically found in hydro-
carbons (Figure 2). The usual 2c-2e bond of this type
provides a place for as many electrons as atomic
orbitals. Thus, if n atomic orbitals form a bonding
network using exclusively 2c-2e bonds such as in the
saturated hydrocarbons, they form n/2 bonding orbit-
als which accommodate n electrons. For example, the
chemical bonding in ethane, C2H6, consists of one
C-C and six C-H 2c-2e bonds formed by the 14
atomic orbitals originating from the eight valence
orbitals of the two carbon atoms and the six valence
orbitals of the six hydrogen atoms. These 14 atomic
orbitals effectively use these 14 valence electrons
consisting of four valence electrons from each of the
carbon atoms and a single valence electron from each
of the hydrogen atoms. In the 3c-2e bonding found
in boranes, three atoms supply three orbitals, one on
each atom. These atomic orbitals interact to form one
bonding and two antibonding orbitals so that two
electrons may thus fill the bonding orbital to form a
3c-2e bond (Figure 2). If n atomic orbitals interact to
form only 3c-2e bonds, they form only n/3 bonding
orbitals which can accommodate only 2n/3 electrons.
Thus, 3c-2e bonding is used in the so-called “electron-
deficient” compounds in which there are fewer bond-
ing electrons than atomic orbitals. Diborane, B2H6,
is a simple example of such an electron-deficient
compound since the combination of two boron and six
hydrogen atoms provides the same 14 atomic orbitals
as the two carbon and six hydrogen atoms of ethane.
However, the combination of two boron atoms and
six hydrogen atoms provides only 12 valence elec-
trons, leading to the electron deficiency of diborane.
The availability of 14 atomic orbitals but only 12
valence electrons in diborane leads to the structure
B2H4(µ-H)2 consisting of four 2c-2e B-H bonds to the
external hydrogens and two 3c-2e bonds B-H-B
bonds involving the bridging hydrogens (Figure 1).
Since doubly deprotonated diborane, B2H4

2-, is iso-
electronic with ethylene, C2H4, the set of the two 3c-
2e B-H-B bonds in diborane can also be viewed as
a protonated BdB double bond.8 In this sense,
diborane is more closely related to ethylene than to
ethane.

Lipscomb7,35,36 has studied the topology of the
distribution of 2c-2e B-B and 3c-2e B-B-B bonds
in networks of boron atoms using principles com-
pletely analogous to those discussed above for the
balance of valence electrons and orbitals in diborane.
The following assumptions are inherent in Lips-

comb’s methods. (1) Only the 1s orbital of hydrogen
and the four sp3 orbitals of boron are used. (2) Each
external (i.e.., terminal) B-H bond is regarded as a
typical 2c-2e single bond requiring the hydrogen 1s
orbital, one hybridized boron orbital, and one electron
each from the hydrogen and boron atoms. Because
of the very small electronegativity difference between
hydrogen and boron, these bonds are assumed to be
nonpolar. In polynuclear boron hydrides, every boron
atom may form 0 or 1 but never more than 2 such
external bonds. (3) Each B-H-B 3c-2e “bridge” bond
corresponds to a filled three-center localized bonding
orbital requiring the hydrogen orbital and one hybrid
orbital from each boron atom. (4) The orbitals and
electrons of any particular boron atom are allocated
to satisfy first the requirement of the external B-H
single bonds and the bridge B-H-B bonds. The
remaining orbitals and electrons are allocated to the
skeletal molecular orbitals of the boron framework.

The relative amounts of orbitals, electrons, hydro-
gen, and boron atoms as well as bonds of various
types can be expressed in a systematic way.7,35,36 For
a neutral boron hydride BpHp+q containing s bridging
hydrogen atoms, x extra 2c-2e B-H bonds in terminal
BH2 groups rather than BH groups, t 3c-2e B-B-B
bonds, and y 2c-2e B-B bonds, balancing the hydro-
gen atoms leads to s + x ) q assuming that each
boron atom is bonded to at least one hydrogen atom.
Since each boron atom supplies four orbitals but only
three electrons, the total number of 3c-2e bonds in
the molecule is the same as the number of boron
atoms, namely, s + t ) p. This leads to the following
equations of balance:

Using this approach, the structure of a given borane
can be expressed by a four-digit styx number corre-
sponding to the numbers of 3c-2e B-H-B bonds, 3c-
2e B-B-B bonds, 2c-2e B-B bonds, and BH2 groups,
respectively. For example, the styx numbers for the
structures for the boranes originally discovered by
Stock are 2002 for B2H6, 4012 for B4H10, 4120 for
B5H9, 3203 for B5H11, 4220 for B6H10, and 4620 for
B10H14 (Figure 1).

B. Deltahedral Boranes and Polyhedral Skeletal
Electron Pair Theory: The Wade−Mingos Rules

Structural information on the boranes BnHn
2- (6

e n e 12)18-22 show all of these ions to have the
deltahedral structures (Figure 3) as suggested by
Williams in 1971.10 This group of deltahedra have
been described by Williams37 as the “most spherical”
deltahedra since they are those with the most uni-
formly or most homogeneously connected vertices.
This corresponds to deltahedra having exclusively
degree 4 and 5 vertices for BnHn

2- (n ) 6, 7, 8, 9, 10,
and 12) and having all degree 4 and 5 vertices except
for a single degree 6 vertex in B11H11

2-. In addition,

2s + 3t + 2y + x ) 3p
(orbital balance with three orbitals/BH vertex)

(1a)

s + 2t + 2y + x ) 2p (electron balance with
two skeletal electrons/BH vertex) (1b)

1122 Chemical Reviews, 2001, Vol. 101, No. 5 King



Williams10 also recognized that the loss of boron
vertices from these most spherical closo deltahedra
generates the structures of the known boranes BnHn+4
and BnHn+6 (Figure 1). Thus, the so-called nido
boranes BnHn+4 and isoelectronic carboranes have
structures which can be derived from the correspond-
ing Bn+1Hn+1

2- structure by the loss of the vertex of
highest degree (i.e., the most highly connected ver-
tex). Similarly, the so-called arachno boranes BnHn+6
are related to those of the corresponding Bn+2Hn+2

2-

structure by the loss of a pair of adjacent vertices of
relatively high degree. Williams10 thus first recog-
nized the relationship between the closo (BnHn

2-),
nido (BnHn+4), and arachno (BnHn+6) borane struc-
tures, which is a key aspect of the commonly accepted
theory for polyhedral boron species. Furthermore, the
role of the most spherical deltahedra in all of these
structures suggest that they are particularly stable
structural units in borane chemistry similar to the
planar benzenoid rings in the chemistry of aromatic
hydrocarbons and their derivatives.

The next important contribution in this area was
made shortly thereafter by Wade,24 who recognized
that this structural relationship could be related to
the number of valence electrons associated with
skeletal bonding in the boranes. Thus, deprotonation
of all of the bridging hydrogens from the related
series of boranes BnHn

2-, Bn-1H(n-1)+4, and Bn-2H(n-2)+6
gives the ions BnHn

2-, Bn-1Hn-1
4-, and Bn-2Hn-2

6-,
which can readily be seen to have the same number
of skeletal electron pairs, namely, n + 1, correspond-
ing to 2n + 2 skeletal electrons. Consequently,
Wade24 provided an electronic rationale for the
observations of Williams,10 namely, that the closo,
nido, and arachno structures are related because
they share a common number of bonding molecular
orbitals associated with the boron skeleton. Rudolph
and Pretzer38,39 subsequently provided the first at-
tempt to account for the structural and electronic
relationships proposed by Williams and Wade using
semiempirical molecular orbital calculations. Min-
gos40,41 incorporated these ideas into his “polyhedral
skeletal electron pair approach”, which provides a
simple way to understand the structural diversity
shown by polynuclear molecules. Because of the
seminal work of Wade and Mingos in understanding
electron counting in polyhedral molecules, the rules
assigning 2n + 2 skeletal electrons to deltahedral
boranes and related nido and arachno derivatives as
well as other similar polyhedral molecules (e.g.,
certain transition-metal clusters) are frequently called
the “Wade-Mingos Rules.”

C. Localized Bonding Models for Deltahedral
Boranes: Three-Dimensional Analogues of
Kekulé Structures

A central idea in the aromaticity of planar ben-
zenoid hydrocarbons is the contribution of two or
more different structures of equivalent energy con-
sisting of alternating C-C single and CdC double
bonds known as Kekulé structures to a lower energy
averaged structure known as a resonance hybrid.42

In benzene itself the two equivalent Kekulé struc-

tures contain three double and three single bonds
alternating along the six edges of the C6 hexagon.

The 2c-2e B-B bonds and 3c-2e B-B-B bonds in
polyhedral boranes can be components of Kekulé-type
structures similar to the C-C single and CdC double
bonds in planar hydrocarbons. Thus, consider the
deltahedral boranes BnHn

2- (6 e n e 12). Such
deltahedral boranes cannot have any terminal BH2
groups or 3c-2e B-H-B bonds and have two “extra”
electrons for the -2 charge on the ion, so that s ) x
) 0 in the equations of balance (eqs 1a and 1b), which
then reduce to the following equations in which n is
the number of boron atoms in the deltahedron
corresponding to p in eqs 1a and 1b

Solving the simultaneous eqs 2a and 2b leads to y )
3 and t ) n - 2, implying the presence of three 2c-2e
B-B bonds and n - 2 3c-2e B-B-B bonds. Since a
deltahedron with n vertices has 2n - 4 faces, the
n - 2 3c-2e B-B-B bonds cover exactly one-half of
the faces. In that sense a Kekulé-type structure for
the deltahedral boranes BnHn

2- has exactly one-half
of the faces covered by 3c-2e B-B-B bonds just like
a Kekulé structure for a benzenoid hydrocarbon has
one-half of the edges covered by CdC double bonds.

An initial attempt was made by Lipscomb and co-
workers43 to generate Kekulé-type localized bonding
structures for the deltahedral boranes using wave
functions calculated in the approximation of dif-
ferential overlap. Their 1977 paper presents a variety
of such localized bonding structures for the delta-
hedral boranes containing networks of 2c-2e B-B
and 3c-2e B-B-B bonds. Subsequently in 1984
O’Neill and Wade44 examined such localized bonding
schemes using the following fundamental assump-
tions. (1) Each skeletal atom is assumed to partici-
pate in three skeletal bonds in addition to the
external bond, typically to a hydrogen atom.(2) Each
edge of the skeletal Bn polyhedron must correspond
to a 2c-2e B-B bond or a 3c-2e B-B-B bond. (3) A
pair of boron atoms cannot be simultaneously bonded
to each other both by a 2c-2e B-B bond and one or
two 3c-2e B-B-B bonds since these arrangements
would require too close an alignment of the atomic
orbitals involved. (4) Cross-polyhedral interactions,
which are significantly longer than polyhedral edge
interactions, are considered to be nonbonding. (5)
When individual bond networks do not match the
symmetry of the polyhedron in question, resonance
between plausible canonical forms needs to be in-
voked.

These assumptions, particularly assumption 3,
pose certain restrictions on the combinations of 2c-
2e B-B and 3c-2e B-B-B bonds meeting at poly-
hedral vertices of various degrees (Figure 4).44 (1)
Degree 3 vertices: The only possibilities are three
2c-2e B-B bonds along the polyhedral edges corre-
sponding to edge-localized bonding or three 3c-2e
B-B-B bonds in the polyhedral faces. (2) Degree 4

3t + 2y ) 3n (orbital balance for BnHn
2-) (2a)

2t + 2y ) 2n + 2 (electron balance for BnHn
2-)
(2b)

Polyhedral Boranes and Related Molecules Chemical Reviews, 2001, Vol. 101, No. 5 1123



vertices: At least one 3c-2e bond must meet at each
degree 4 vertex since there are not enough internal
orbitals to form exclusively 2c-2e B-B bonds along
each of the four edges of a degree 4 vertex. (3) Degree
5 vertices: A minimum of two 3c-2e bonds must meet
at each degree 5 vertex. (4) Degree 6 vertices: All
three internal bonds at each degree 6 vertex must
be 3c-2e B-B-B bonds.

O’Neill and Wade44 also consider the feasibility of
deltahedral structures isoelectronic and isolobal with
BnHn which are either neutral such as the BnXn
halides,45 have a -2 charge such as the stable
deltahedral borane anions BnHn

2-, or are isoelectronic
and isolobal with BnHn

4- such as the 8-vertex species
(C5H5)4Ni4B4H4.46 They relate to the following two
criteria for the feasibility of deltahedral structures:
(1) The ability to draw a satisfactory Kekulé-type
structure using 2c-2e B-B and 3c-2e B-B-B bonds
and (2) the degeneracies of the highest occupied and
lowest unoccupied molecular orbitals (HOMO’s and
LUMO’s, respectively).

The latter criterion relates to the closed-shell
configuration for the dinegative anions BnHn

2- and
thus the requirements of a nondegenerate HOMO for
neutral BnHn also to have a closed-shell configuration
and a nondegenerate LUMO for tetranegative BnHn

4-

also to have a closed-shell configuration. The conclu-
sions from this study are summarized in Table 1.
From these observations, the deltahedral species
BnHn (n ) 8, 9, and 11) are seen to be potentially
stable with 0, -2, and -4 charges whereas the
deltahedral species BnHn (n ) 6, 7, 10, and 12) are
seen to be stable only with a -2 charge. This is in
approximate accord with the stability of the neutral
halide species BnXn.45

Gillespie, Porterfield, and Wade47 subsequently
developed an alternative predominantly localized

electron pair scheme for describing the electron
distribution and bonding in the deltahedral anions
BnHn

2- and related species. In their scheme a skeletal
electron pair is assumed to remain localized on each
vertex, thereby using 2n of the 2n + 2 skeletal
electrons. The remaining electron pair is regarded as
delocalized just inside the roughly spherical surface
on which the skeletal atoms lie. This scheme provides
a clearer picture of the electron distribution than that
conveyed by resonating Kekulé-type structures and
also preserves the symmetry of the deltahedron.

D. Resonance Stabilization of Deltahedral
Boranes: Graph-Theoretical Approaches to
Three-Dimensional Aromaticity in Borane
Deltahedra

The existence of Kekulé structures consisting of 2c-
2e B-B bonds and 3c-2e B-B-B bonds is not
sufficient to account for the special stability of
deltahedral boranes just as the existence of Kekulé
structures consisting of C-C single and CdC double
bonds fails to account for the special stabilities of
benzene and other benzenoid hydrocarbons. Thus,
any of the deltahedral borane anions BnHn

2- (6 e n
e 12) is much more stable toward air, heat, moisture,
and many chemical reagents than the typically highly
inflammable and otherwise highly reactive neutral
boranes with open structures. Furthermore, the
configurations of the 2c-2e B-B bonds and 3c-2e
B-B-B bonds in individual Kekulé structures of the
most symmetrical deltahedral boranes such as the
octahedral B6H6

2- and the icosahedral B12H12
2- do not

conform to the experimentally observed high sym-
metry of these ions just as an individual Kekulé
structure of benzene does not have the full C6
symmetry observed experimentally. Other methods
are needed to determine the resonance stabilization
of these deltahedral ions leading to aromaticity. Such
methods ultimately derive from Hückel theory but
use graph theory to model the interaction between
the atomic orbitals participating in the delocalization
leading to the aromatic stabilization. These graph-
theoretical approaches, which were first applied to
the study of the aromaticity in benzenoid hydrocar-
bons by Ruedenberg48 and Schmidtke,49 are most
useful in demonstrating the close analogy between
the bonding in two-dimensional planar aromatic
systems such as benzene and the three-dimensional
deltahedral systems such as the boranes and carbo-
ranes.

Figure 4. Bonding networks by which atoms at vertices
of particular degrees can bond to their skeletal neighbors
indicating 2c-2e B-B bonds by bold edges and 3c-2e
B-B-B bonds by dotted lines meeting in the center of a
face.

Table 1. Feasibility of Deltahedral BnHn Species with
0, -2, and -4 Charges

degeneracies

existence
of Kekulé
structure
for BnHn

z

deltahedron formula HOMO LUMO 0 -2 -4

octahedron B6H6 3 3 + + +
pentagonal bipyramid B7H7 2 2 - + -
bisdisphenoid B8H8 1 1 + + +
tricapped trigonal prism B9H9 1 1 + + +
bicapped square antiprism B10H10 2 2 - + -
edge-coalesced icosahedron B11H11 1 1 + + +
icosahedron B12H12 4 4 + + +
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Graph-theoretical methods for the study of aro-
matic systems use a graph G to describe the overlap
of the atomic orbitals participating in the delocalized
bonding in which the vertices V correspond to
orbitals and the edges E correspond to orbital over-
laps. The adjacency matrix50 A of such a graph can
be defined as follows

The eigenvalues of the adjacency matrix are obtained
from the following determinantal equation

in which I is the unit matrix (Iii ) 1 and Iij ) 0 for i
* j ). These topologically derived eigenvalues are
closely related to the energy levels as determined by
Hückel theory which uses the secular equation

Note the general similarities between eqs 4 and 5.
In eq 5 the energy matrix H and the overlap matrix
S can be resolved into the identity matrix I and the
adjacency matrix A as follows

The energy levels of the Hückel molecular orbitals
(eq 5) are thus related to the eigenvalues xk of the
adjacency matrix A (eq 4) by the following equation

In eq 7, R is the standard Coulomb integral, assumed
to be the same for all atoms, â is the resonance
integral taken to be the same for all bonds, and S is
the overlap integral between atomic orbitals on
neighboring atoms. Because of the relationship of the
set of the eigenvalues of a graph to the energy levels
of the molecular orbitals of a structure represented
by the graph in question as indicated by eqs 4-7,
the set of eigenvalues of a graph is called the
spectrum of the graph, even by mathematicians solely
concerned with graph theory without interest in its
chemical applications.

The two extreme types of skeletal chemical bonding
in polygonal or polyhedral molecules may be called
edge-localized and globally delocalized.31,51-53 An
edge-localized polygon or polyhedron has 2c-2e bonds
along each edge and is favored when the number of
internal orbitals from each vertex atom matches the
degree of the corresponding vertex. A globally delo-
calized polygon or polyhedron has a multicenter bond

involving all of the vertex atoms; such global delo-
calization is a feature of fully aromatic systems.
Delocalization is favored when the numbers of inter-
nal orbitals do not match the vertex degrees.

Consideration of the properties of vertex groups
leads to the following very simple rule to determine
whether polygonal or polyhedral molecules exhibit
delocalized bonding or edge-localized bonding: De-
localization occurs when there is a mismatch between
the vertex degree of the polygon or polyhedron and
the number of internal orbitals provided by the vertex
atom.

This rule is illustrated in Table 2 for normal vertex
atoms providing three internal orbitals. This rule
implies that fully edge-localized bonding occurs in a
polyhedral molecule in which all vertices have degree
3. Such is the case for the polyhedranes C2nH2n such
as tetrahedrane (n ) 2), cubane (n ) 4), and dodeca-
hedrane (n ) 10), in which the vertex degrees are
all three thereby matching the three available inter-
nal orbitals and leading to edge-localized bonding
represented by the 3n/2 two-center carbon-carbon
bonds of the skeleton. In the planar polygonal mol-
ecules CnHn

(n-6)+ (n ) 5, 6, 7), the vertex degrees are
all 2 and thus do not match the available three
internal orbitals, thereby leading to globally delocal-
ized two-dimensional aromatic systems. Further-
more, polyhedral molecules having all normal vertex
atoms are globally delocalized if all vertices of the
polyhedron have degrees 4 or larger; the simplest
such polyhedron is the regular octahedron with six
vertices, all of degree 4. Such globally delocalized
polyhedra are characteristic of three-dimensional
aromatic systems as exemplified by the deltahedral
boranes BnHn

2- (6 e n e 12) and isoelectronic
carboranes (Figure 3). Furthermore, tetrahedral cham-
bers in deltahedra, which lead to isolated degree 3
vertices, provide sites of localization in an otherwise
delocalized molecule provided, of course, that all
vertex atoms use the normal three internal orbitals.

Aromatic systems can be classified by the nodality
of the orbitals participating in the delocalization.
Thus, the deltahedral boranes are examples of aro-
matic systems constructed from anodal sp hybrid
orbitals (Figure 5a) in contrast to the planar poly-
gonal hydrocarbons, which are examples of aromatic
systems constructed from uninodal p orbitals (Figure
5b). In both cases the three internal orbitals on each
vertex atom are partitioned into two twin internal
orbitals (also25 called tangential orbitals) and a
unique internal orbital (also25 called a radial orbital).
Pairwise overlap between the 2n twin internal orbit-
als is responsible for the formation of the polygonal
or deltahedral framework and leads to the splitting
of these 2n orbitals into n bonding and n antibonding
orbitals. The magnitude of this splitting can be
designated as 2âs, where âs refers to the parameter

Table 2. Delocalized versus Localized Bonding and the “Matching Rule” (assumes three internal orbitals per
vertex atom)

structure type vertex degrees matching localization examples

planar polygons 2 no delocalized benzene, C5H5
-, C7H7

+

“simple polyhedra” 3 yes localized polyhedranes: C4H4, C8H8, C20H20
deltahedra 4, 5 (6) no delocalized polyhedral boranes and carboranes

Aij ) {0 if i ) j
1 if i and j are connected by an edge
0 if i and j are not connected by an edge

(3)

|A - xI| ) 0 (4)

|H - ES| ) 0 (5)

H ) RI + âA (6a)

S ) I + SA (6b)

Ek )
R + xkâ
1 + xkS

(7)
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â in eqs 6a and 7 as applied to surface bonding. This
portion of the chemical bonding topology can be
described by a disconnected graph Gs having 2n
vertices corresponding to the 2n twin internal orbit-
als and n isolated K2 components; a K2 component
has only two vertices joined by a single edge. The
dimensionality of this bonding of the twin internal
orbitals is one less than the dimensionality of the
globally delocalized system. Thus, in the case of the
two-dimensional planar polygonal systems, such as
benzene, the pairwise overlap of the 2n twin internal
orbitals leads to the σ-bonding network, which may
be regarded as a set of one-dimensional bonds along
the perimeter of the polygon using adjacent pairs of
polygonal vertices. The n bonding and n antibonding
orbitals thus correspond to the σ-bonding and σ*-
antibonding orbitals, respectively. In the case of the
three-dimensional deltahedral systems, the pairwise
overlap of the 2n twin internal orbitals results in
bonding over the two-dimensional surface of the
deltahedron, which may be regarded as topologically
homeomorphic to the sphere.54

The equal numbers of bonding and antibonding
orbitals formed by pairwise overlap of the twin
internal orbitals are supplemented by additional
bonding and antibonding orbitals formed by the
global mutual overlap of the n unique internal
orbitals. The bonding topology of the n unique
internal orbitals, whether the uninodal p orbitals in
the planar polygonal aromatic hydrocarbons (Figure
5b) or the anodal sp hybrids in the three-dimensional
deltahedral boranes (Figure 5a), can be described by
a graph Gc in which the vertices correspond to the
vertex atoms of the polygon or deltahedron, or
equivalently their unique internal orbitals, and the
edges represent pairs of overlapping unique internal
orbitals. The energy parameters of the additional
molecular orbitals arising from such overlap of the
unique internal orbitals are determined from the
eigenvalues of the adjacency matrix Ac of the graph
Gc using âc as the energy unit where âc refers to the

parameter â in eqs 6a and 7 as applied to core
bonding. In the case of the two-dimensional aromatic
system benzene, the graph Gc is the C6 cyclic graph
(the 1-skeleton55 of the hexagon) which has three
positive (+2, +1, +1) and three negative (-2, -1, -1)
eigenvalues corresponding to the three π-bonding and
three π*-antibonding orbitals, respectively (Figure 6).
The spectra of the cyclic graphs Cn all have odd
numbers of positive eigenvalues50 leading to the
familiar 4k + 2 (k ) integer) π-electrons56 for planar
aromatic hydrocarbons. The total benzene skeleton
thus has 9 bonding orbitals (6σ and 3π) which are
filled by the 18 skeletal electrons which arise when
each of the CH vertices contributes three skeletal
electrons. Twelve of these skeletal electrons are used
for the σ-bonding and the remaining six electrons for
the π-bonding.

Figure 7a illustrates how the delocalized bonding
in benzene from the C6 overlap of the unique internal
orbitals, namely, the p orbitals, leads to aromatic
stabilization. In a hypothetical localized “cyclo-
hexatriene” structure in which the interactions be-
tween the p orbitals on each carbon atom are pair-
wise interactions, the corresponding graph G consists
of three disconnected line segments (i.e., 3 × K2). This
graph has three +1 eigenvalues and three -1 eigen-
values. Filling each of the corresponding three bond-
ing orbitals with an electron pair leads to an energy
of 6â from this π bonding. In a delocalized “benzene”
structure in which the delocalized interactions be-
tween the p orbitals on each carbon atom are de-
scribed by the cyclic C6 graph, filling the three
bonding orbitals with an electron pair each leads to
an energy of 8â. This corresponds to a resonance
stabilization of 8â - 6â ) 2â arising from the
delocalized bonding of the carbon p orbitals in
benzene corresponding to the two-dimensional aro-
maticity in benzene. We will see below how similar
ideas can be used to describe the three-dimensional
aromaticity in deltahedral boranes.

An important question is the nature of the core
bonding graph Gc for the deltahedral boranes BnHn

2-.
The two limiting possibilities for Gc are the complete
graph Kn and the deltahedral graph Dn, and the
corresponding core bonding topologies can be called
the complete and deltahedral topologies, respectively.
In the complete graph Kn, each vertex has an edge
going to every other vertex leading to a total of
n(n - 1)/2 edges.57 For any value of n, the corre-
sponding complete graph Kn has only one positive
eigenvalue, namely, n - 1, and n - 1 negative
eigenvalues, namely, -1 each. The deltahedral graph
Dn is identical to the 1-skeleton55 of the borane
deltahedron. Thus, two vertices of Dn are connected
by an edge if, and only if, the corresponding vertices
of the deltahedron are connected by an edge.

Figure 5. Types of vertex orbitals participating in the
delocalization of aromatic systems of various types as
classified by their nodalities: (a) The anodal sp hybrid
unique internal (radial) orbitals of a B-H vertex in the
deltahedral boranes; (b) the uninodal p orbital of a C-H
vertex in planar polygonal aromatic hydrocarbons such as
benzene.

Figure 6. Benzene and the corresponding spectrum of Gc
(the C6 cyclic graph).
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The graphs Dn for the deltahedra of interest with
six or more vertices all have at least four zero or
positive eigenvalues in their spectra (Figure 8).
However, in all cases there is a unique positive
eigenvalue which is much more positive than any
other of the positive eigenvalues. This unique positive
eigenvalue can be called conveniently the principal
eigenvalue and corresponds to the fully symmetric
A(1)(g) irreducible representation of the symmetry
group of Gc. The molecular orbital corresponding to
the principal eigenvalue of Gc may be called the
principal core orbital. Since deltahedral boranes of
stoichiometry BnHn

2- have 2n + 2 skeletal electrons
of which 2n are used for the surface bonding, as noted
above, there are only two skeletal electrons remain-
ing for core bonding corresponding to a single core
bonding molecular orbital and a single positive eigen-
value for Gc. Thus, deltahedral boranes are three-
dimensional aromatic systems having 4k + 2 ) 2 core
bonding electrons for k ) 0 analogous to the 4k + 2
π electrons for k ) 0 (C3H3

+), k ) 1 (C5H5
-, C6H6,

C7H7
+), or k ) 2 (C8H8

2-) for planar two-dimensional
polygonal aromatic systems. Furthermore, only if Gc
is taken to be the corresponding complete graph Kn
will the simple model given above for globally de-
localized deltahedra provide the correct number of
skeletal electrons in all cases, namely, 2n + 2 skeletal
electrons for 6 e n e 12. Such a model with complete
core bonding topology is a convenient working basis
for the chemical bonding topology in deltahedral
boranes exhibiting three-dimensional aromaticity.
However, deltahedral core bonding topology can also
account for the observed 2n + 2 skeletal electrons in
the BnHn

2- deltahedral boranes if there is a mecha-
nism for raising the energies of all of the core

molecular orbitals other than the principal core
orbital to antibonding energy levels.

The distinction between complete (Kn) and delta-
hedral (Dn) core bonding topology is illustrated for
octahedral B6H6

2- in Figure 9. Among the (6)(6 - 1)/2
) 15 pairs of six vertices in an octahedron (D6
graph), 12 pairs correspond to edges of the octahe-
dron (cis interactions) and the remaining three pairs
correspond to antipodal vertices related by the
inversion center and not connected by an edge (trans
interactions). However, all of the 15 pairs of six
vertices in a complete K6 graph correspond to edges
of equal weight. In an octahedral array of six points,
a parameter t can be defined as the ratio of the trans
interactions to the cis interactions. This parameter t
is 0 for the pure octahedral topology (D6) and 1 for
pure complete topology (K6). Values of t between 0
and 1 can be used to measure gradations of topologies
between D6 and K6 corresponding to the weighting
of edges representing trans interactions relative to
those representing cis interactions in the underlying
graph Gc. In group-theoretical terms, pure complete
core bonding topology (i.e., t ) 1) uses the symmetric
permutation group58 S6 with 720 operations rather
than its subgroup Oh with 48 operations (the sym-
metry point group of the octahedron) to describe the
symmetry of the core bonding manifold in B6H6

2-.
The actual Oh point group rather than a higher S6
permutational symmetry of B6H6

2- results in the
partial removal of the 5-fold degeneracy of the core
antibonding orbitals implied by the complete core
bonding topology (Figure 9).

Multicenter core bonding such as that implied by
the Kn topology of the n-vertex complete graph has
been shown by Aihara59 to lead to considerable

Figure 7. (a) Aromatic stabilization of benzene relative to the hypothetical localized triolefin cyclohexatriene. (b) Aromatic
stabilization of B6H6

2- considering both complete and deltahedral (octahedral) delocalization for the core bonding.
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resonance stabilization as illustrated in Figure 7b for
B6H6

2-. In a hypothetical localized structure in which
the interactions between the radial sp hybrids are
pairwise interactions, the spectrum of the corre-
sponding graph Gc consists of three disconnected line
segments (i.e., 3 × K2). The spectrum of this discon-
nected graph has three +1 eigenvalues and three -1
eigenvalues. Filling one of the resulting three bond-
ing orbitals with the available two core bonding
electrons leads to an energy of 2â from the core
bonding. In a completely delocalized structure in
which the core bonding is described by the complete
graph K6, this electron pair resides in a bonding
orbital with an eigenvalue of +5 corresponding to an
energy of (2)(5â) ) 10â (Figure 7b). The aromatic
stabilization of completely delocalized B6H6

2- is thus
10â - 2â ) 8â assuming the same â unit for both
the localized and completely delocalized structures.
In an octahedrally delocalized B6H6

2- in which the
core bonding is described by the deltahedral graph
D6 corresponding to the 1-skeleton27 of the octahe-
dron, the core bonding electron pair resides in a
bonding orbital with an eigenvalue of +4 correspond-
ing to an energy of (2)(4â) ) 8â (Figure 7b). The
aromatic stabilization of octahedrally delocalized
B6H6

2- is thus 8â - 2â ) 6â. Thus, the aromatic
stabilization of B6H6

2- is considerable regardless of
whether the delocalized core bonding is considered
to have the complete topology represented by the
complete graph K6 or the octahedral topology repre-
sented by the deltahedral graph D6.

There are several implications of this bonding
model for delocalized deltahedral structures having
n vertices using the complete core bonding topology
described by the corresponding Kn complete graph.
(1) The overlap of the n unique internal orbitals to
form an n-center core bond may be hard to visualize
since its topology corresponds to that of the com-
plete graph Kn, which for n g 5 is nonplanar by
Kuratowski’s theorem60 and thus cannot correspond
to the 1-skeleton55 of a polyhedron realizable in three-
dimensional space. However, the overlap of these
unique internal orbitals does not occur along the
edges of the deltahedron or any other three-dimen-
sional polyhedron. For this reason, the topology of
the overlap of the unique internal orbitals in the core
bonding of a deltahedral cluster need not correspond
to a graph representing a 1-skeleton of a three-
dimensional polyhedron. The only implication of the
Kn graph description of the bonding topology of the
unique internal orbitals is that the deltahedron is
topologically homeomorphic54 to the sphere as noted
above. (2) The equality of the interactions between
all possible pairs of unique internal orbitals required
by the Kn model for the core bonding is obviously a
very crude assumption since in any deltahedron with
five or more vertices not all pairwise relationships
of the vertices are equivalent. The example of the
nonequivalence of the cis and trans vertex pairs in
an octahedral structure such as B6H6

2- has already
been discussed. However, the single eigenvalue of the
Kn graph is so strongly positive that severe inequali-

Figure 8. Eigenvalues of the borane deltahedra (Figure 3) having 6, 7, 8, 9, 10, and 12 vertices.
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ties in the different vertex pair relationships are
required before the spectrum of the graph represent-
ing precisely the unique internal orbital overlap
contains more than one positive eigenvalue.

Aihara32 described an alternative graph-theoretical
approach to modeling the aromaticity in the delta-
hedral boranes at about the same time as the original
publication by King and Rouvray33 outlined above.
Aihara’s paper was also significant in being the first
to emphasize the three-dimensional aromaticity of
polyhedral boranes even in its title. He used a
Hückel-type molecular orbital (MO) theory with the
three-center bond formalism of Kettle and Tomlin-
son61 so that localized 3c-2e B-B-B bonding orbitals
were used as basis functions. Such localized 3c-2e
B-B-B bonds were assumed to be in every face of
the BnHn

2- deltahedron at variance with the topologi-
cal methods of Lipscomb noted above,7,35,36,43 which
restrict the number of 3c-2e B-B-B bonds in a delta-
hedral structure to those that can be formed with the
three skeletal orbitals available to each boron atom
in the deltahedron. Nevertheless, Aihara32 provided
reasonable numerical estimates of the resonance
energies of the BnHn

z- deltahedra (z ) 2 for 5 e n e
12; z ) 0 for n ) 4) in terms of â units. In this
connection, the B4H4 tetrahedron and the B5H5

2-

trigonal bipyramid were found to have no resonance

energy and the B12H12
2- icosahedron was found to

have the largest resonance energy.
These estimates of BnHn resonance energies by

Aihara32 confirm the observation that degrees 4 or
greater for all deltahedral vertices appear to be
essential for the stability of deltahedral boranes of
the type BnHn

2- and the isoelectronic carboranes.
Thus, although the borane anions BnHn

2- (6 e n e
12) are very stable, the five-boron deltahedral borane
B5H5

2- based on a trigonal pyramidal structure with
two (apical) degree 3 vertices has never been pre-
pared. Such degree 3 vertices in boron polyhedra
lead to two-electron two-center bonds along each of
the three edges meeting at the degree 3 vertex and
leave no internal orbitals from degree 3 vertices for
the multicenter core bond responsible for aromatic
delocalization. However, the dicarbaborane 1,5-
C2B3H5 isoelectronic with B5H5

2- with the carbon
atoms in the degree 3 apical vertices of the trigonal
bipyramid can be isolated.62 The B-C bonds along
the 6 B-C edges of the C2B3 trigonal bipyramid in
1,5-C2B3H5 can be interpreted as edge-localized B-C
bonds leading to three-coordinate boron atoms with
a local environment similar to the boron environment
in trimethylboron, (CH3)3B (Figure 10a). This local-
ized bonding model for trigonal bipyramidal boranes
is sometimes called the “classical” model in contrast

Figure 9. Distinction between complete (K6) and deltahedral (D6) core bonding topology for octahedral B6H6
2-.
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to a “nonclassical” delocalized bonding model similar
to the bonding in the larger deltahedra without
degree 3 vertices. In Figure 10a, the “nonclassical”
delocalized bonding model for 1,5-C2B3H5 is depicted
as a resonance hybrid of two equivalent Kekulé-type
structures.

Another observation by Aihara32 is the unusually
high resonance energy of the B12H12

2- icosahedron
compared with the other borane deltahedra. This is
in accord with experimental observations that struc-
tures containing boron icosahedra are the most stable
and least chemically reactive relative to those based
on other boron deltahedra as exemplified by the ionic
B12H12

2- and CB11H12
-, the molecular C2B10H12, the

stable allotropes of elemental boron, and many of the
most stable metal borides. This unusual stability of
boron deltahedra suggests that nonicosahedral boron
deltahedra can be described in terms of their devia-
tion of the local surroundings of their vertices from
those found in ideal icosahedra. In this connection,
the characteristic feature of the geometry of the
regular icosahedron is the presence of 12 equivalent
vertices of degree 5 where the degree of a vertex is
the number of edges meeting at that vertex. If the
unusual stability of borane icosahedra can be at-
tributed to the special stability of degree 5 boron
vertices, then vertices of degrees other than 5 can
be considered to be defects in the deltahedral struc-
ture.63 The most favorable borane deltahedra will be
those with a minimum number of such defective
vertices and with the defective vertices as widely
spaced as possible.

This idea of defective vertices is not new but was
used by Frank and Kasper more than 40 years ago
to study polyhedra found in metal alloy structures.64

In such systems the defective vertices are vertices of
degree 6. Frank and Kasper showed that there are
only four polyhedra (Figure 11) with only degree
5 and 6 vertices and with “isolated” degree 6
vertices, i.e., no pair of degree 6 vertices is connected
by an edge. The four Frank-Kasper polyhedra are

significant not only in metal alloy structures, but also
in metal carbonyl cluster chemistry in describing the
polyhedra formed by the carbonyl ligands in poly-
nuclear metal carbonyls.65

Ideas analogous to those applied by Frank and
Kasper to deltahedra with degree 5 and 6 vertices
can also be applied to the borane deltahedra with
degree 4 and 5 vertices. In such borane deltahedra
the defective vertices can be considered to be the
vertices of degree 4. Among borane deltahedra
(Figure 3) other than the icosahedron, only the
bicapped square antiprism of B10H10

2- and the tri-
capped trigonal prism of B9H9

2- are seen to meet a
Frank-Kasper-like criterion of nonadjacent degree
4 vertices. This topological observation can be related
to the experimentally observed chemistry of the
deltahedral borane anions in the following ways. (1)
The decrease of the hydrolytic stability of the delta-
hedral boranes in the following sequence66

(2) The only deltahedral boranes formed from the
pyrolysis of CsB3H8 are B12H12

2-, B10H10
2-, and

B9H9
2-, which are the only deltahedral boranes

without adjacent degree 4 vertices.

E. Tensor Surface Harmonic Theory:
Approximation of Borane Deltahedra by Spheres

The graph-theory-derived model for the skeletal
bonding of a deltahedral borane with n vertices with
complete core bonding topology discussed above uses
the corresponding complete graph Kn to describe the
topology of the multicenter core bond leading to the
global delocalization responsible for the three-dimen-

Figure 10. (a) “Classical” versus “nonclassical” structures
for trigonal bipyramidal 1,5-C2B3H5. (b) Dissection of
pentagonal bipyramidal B7H7 into a B5H5 “ring” and two
BH “caps.”

Figure 11. The four Frank-Kaspar polyhedra with their
degree 6 vertices indicated by an asterisk (*).

B12H12
2- > B10H10

2- > B11H11
2- > B9H9

2- ∼
B8H8

2- ∼ B6H6
2- > B7H7

2-
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sional aromaticity of such structures. The precise
topology of the cluster deltahedron does not enter
directly into such models but only the absence of
degree 3 vertices. In other words, graph-theory-
derived models of the skeletal bonding of globally
delocalized deltahedral clusters consider such delta-
hedra to be topologically homeomorphic to the
sphere.54

The topological homeomorphism of a deltahedron
to a sphere used in the graph-theory-derived models
is also the basis of the tensor surface harmonic theory
developed by Stone.67 The tensor surface harmonic
(TSH) theory defines the vertices of a deltahedral
borane as lying on the surface of a single sphere with
the atom positions described by the standard angular
coordinates θ and φ related to latitude and longitude.
The second-order differential equations for the an-
gular dependence of the molecular orbitals from the
core bonding become identical to the equations for
the angular dependence of the atomic orbitals ob-
tained by solution of the Schrödinger equation, with
both sets of equations using the spherical harmonics
YLM(θ,φ).

In TSH theory, as applied to deltahedral boranes,
the internal orbitals of the vertex atoms are classified
by the number of nodes with respect to the radial
vector connecting the vertex atom with the center of
the deltahedron.68 The unique internal orbitals are
anodal or σ-type (Figure 5a) and lead to core bonding
and antibonding molecular orbitals described by the
scalar spherical harmonics Θ(θ)‚Φ(φ) ) YLM(θ,φ),
which for deltahedra having n vertices correspond
successively to a single anodal Sσ orbital (Y00) the
three uninodal Pσ orbitals (Y10, Y11c, Y11s), the five
binodal Dσ orbitals (Y20, Y21c, Y21s, Y22c, Y22s), the seven
trinodal Fσ orbitals (Y30, Y31c, Y31s, Y32c, Y32s, Y33c, Y33s),
etc., of increasing energy. The Sσ, Pσ, Dσ, Fσ orbitals,
etc., correspond to the molecular orbitals arising from
the n-center core bond of the deltahedron. The energy
levels of these orbitals for the core bonding in the
seven deltahedra depicted in Figure 3 correspond to
the spectra of the corresponding deltahedral graphs
Dn (Figure 8). In the deltahedra found in boranes, the
Sσ and Pσ molecular orbitals appear in well-separated
groups whereas the clearly antibonding Dσ and Fσ

molecular orbitals appear clustered around eigen-
values of -1 to -2 without a clear separation.

The twin internal orbitals are uninodal (i.e., π-type)
and lead to surface bonding described by the vector
surface harmonics. Two vector surface harmonic
functions can be generated from each YLM as follows

In eqs 9a and 9b, ∇ is the vector operator

× is the vector cross-product, and the Vh LM of eq 9b is
the parity inverse of the VLM of eq 9a, corresponding
to a rotation of each atomic π-function by 90° about
the radial vector r. The VLM and Vh LM correspond to

the equal numbers of bonding and antibonding
surface orbitals in a globally delocalized deltahedral
cluster leading to three Pπ, five Dπ, seven Fπ, etc.,
bonding/antibonding orbital pairs of increasing en-
ergy and nodality. Since Y00 is a constant, ∇Y00 ) 0
so that there are no Sπ or Shπ orbitals.

The core and surface orbitals defined above by TSH
theory can be related to the following aspects of the
graph-theory derived model for the skeletal bonding
in deltahedral boranes discussed above. (1) The
lowest energy fully symmetric core orbital (A1g, Ag,
A1, or A1′ depending upon the point group of the
deltahedron) corresponds to the Sσ orbital in TSH
theory. Since there are no Sπ or Shπ surface orbitals,
this lowest energy core orbital cannot mix with any
surface orbitals, so that it cannot become antibonding
through core-surface mixing. (2) The three core
orbitals of next lowest energy correspond to Pσ

orbitals in TSH theory. These orbitals can mix with
the Pπ surface orbitals so that the Pσ core orbitals
become antibonding with corresponding lowering of
the bonding energies of the Pπ surface orbitals below
the energies of the other surface orbitals. This is why
graph-theory-derived models of skeletal bonding in
globally delocalized n-vertex deltahedra, which use
the Kn graph to describe the multicenter core bond,
give the correct numbers of skeletal bonding orbitals
even for deltahedra whose corresponding deltahedral
graph Dn has more than one positive eigenvalue. In
this way, TSH theory can be used to justify important
assumptions in the graph-theory-derived models for
the chemical bonding in deltahedral boranes.

F. Dissection of Deltahedra into Rings and Caps:
The Six Interstitial Electron Rule of Jemmis

Jemmis and collaborators69 developed a different
method for studying the aromaticity in certain borane
polyhedra, which also shows an analogy between the
three-dimensional borane structures and the planar
two-dimensional structures of benzene and related
aromatic hydrocarbons. The six interstitial electron
rule dissects polyhedra conceptually into rings and
caps and applies most obviously to pyramids and
bipyramids (Figure 10b). For example, pentagonal
bipyramidal B7H7

2- can be divided into an equatorial
B5H5 ring and two axial BH caps. If two electrons
are assigned to each of the five B-B bonds in the
equatorial ring of B7H7

2- analogous to the five C-C
bonds in the cyclopentadienyl anion, C5H5

-, there are
no electrons available for π-bonding in the B5H5 ring.
However, each of the axial BH groups in B7H7

2-

contributes two electrons to the ring-cap binding. The
two BH caps and the -2 charge in B7H7

2- combine
to provide six electrons to bind the ring and the cap.
Furthermore, three delocalized π-type bonding MOs
are always available from the interaction of rings and
caps in this manner. However, the electrons in these
bonding MOs have been called interstitial electrons
rather than π-electrons because of the three-dimen-
sional nature of the structures.70 This six interstitial
electron rule may be related to Wade’s rules for
bipyramids by deleting the electrons corresponding

VLM ) ∇YLM (9a)

VLM ) r × ∇YLM (9b)

∇ ) ( ∂

∂θ
, 1
sin θ

∂

∂φ) (10)
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to the ring σ-bonds so that six interstitial electrons
remain in the favorable structures. This dissection
of polyhedral molecules into rings and caps is an
artificial process which is particularly useful for
understanding the bonding topology of electron-rich
nido pyramidal boranes having 2n + 4 skeletal
electrons.

G. Fluxionality in Deltahedral Boranes:
Diamond−Square−Diamond Rearrangements

An important property of some of the deltahedral
boranes is the stereochemical nonrigidity or fluxion-
ality of some of the polyhedra.71 Such fluxionality can
be recognized experimentally by nuclear magnetic
resonance (NMR) spectra (e.g., 1H or 11B) with fewer
distinct resonances than would be predicted by the
symmetry of the deltahedron. In addition, fluxional
deltahedra can exhibit a temperature-dependent
NMR spectrum with all of the resonances predicted
from the symmetry of the deltahedron being observed
at low temperatures but coalescence of some of the
sets of resonances into single resonances being
observed at higher temperatures. The theory of
polyhedral rearrangements is useful for understand-
ing stereochemical nonrigidity in polyhedral struc-
tures.

The simplest approach for the study of polyhedral
rearrangements dissects such rearrangements into
elementary steps relating to the detailed topology of
individual polyhedra. The most important elemen-
tary step is the diamond-square-diamond process
which was first recognized in a chemical context by
Lipscomb in 1966.72 In this process (Figure 12a), a
configuration such as p1 can be called a dsd situation
and the edge AB can be called a switching edge. If a,
b, c, and d are taken to represent the degrees of the
vertices A, B, C, and D, respectively, in p1, then the
dsd type of the switching edge AB can be represented
as ab(cd). In this designation, the first two digits refer
to the degrees of the vertices joined by AB but

contained in the faces (triangles) having AB as the
common edge (i.e., C and D in p1). The quadrilateral
face formed in structure p2 may be called a pivot face.

Now consider a polyhedron having e edges. Such a
polyhedron has e distinct dsd situations, one corre-
sponding to each of the e edges acting as the switch-
ing edge. Applications of the dsd process at each of
the dsd situations in a given polyhedron leads in each
case to a new polyhedron. In some cases the new
polyhedron is identical to the original polyhedron. In
such cases, the switching edge can be said to be
degenerate and the dsd type of a degenerate edge
ab(cd) can be seen by application of the process p1 f
p2 f p3 to satisfy the following conditions

A dsd process involving a degenerate switching edge
represents a pathway for a degenerate polyhedral
isomerization of the polyhedron. A polyhedron having
one or more degenerate edges is inherently fluxional
whereas a polyhedron without degenerate edges is
inherently rigid.

This procedure can be used to check the borane
deltahedra (Figure 3) for possible fluxionality with
the following results. (1) Tetrahedron: No dsd process
of any kind is possible since the tetrahedron is the
complete graph K4. A tetrahedron is therefore inher-
ently rigid. (2) Trigonal bipyramid: The three edges
connecting pairs of equatorial vertices are degener-
ate edges of the type 44(33). A dsd process using one
of these degenerate edges as the switching edge and
involving a square pyramid intermediate corresponds
to a Berry pseudorotation (Figure 12b).73,74 (3) Octa-
hedron: The highly symmetrical octahedron has no
degenerate edges and is therefore inherently rigid.
(4) Pentagonal bipyramid: The pentagonal bipyramid
has no degenerate edges and thus by definition is
inherently rigid. However, a dsd process using a
45(44) edge of the pentagonal bipyramid (namely, an

Figure 12. (a) Diamond-square-diamond (dsd) process. (b) A single dsd process interconverting two trigonal bipyramids
through a square pyramid intermediate (Berry pseudorotation). (c) The HOMO-LUMO crossing occurring during the
Berry pseudorotation process.

c ) a - 1 and d ) b - 1 or c ) b - 1 and
d ) a - 1 (11)
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edge connecting an equatorial vertex with an axial
vertex) gives a capped octahedron. The capped octa-
hedron is a low energy polyhedron for ML7 coordina-
tion complexes but an unfavorable polyhedron for
boranes and carboranes because of its degree 3
vertex. (5) Bisdisphenoid: The 8-vertex bisdisphenoid
has four pairwise degenerate edges, which are those
of the type 55(44) located in the subtetrahedron con-
sisting of the degree 5 vertices of the bisdisphenoid
(Figure 3). Thus, two successive or more likely
concerted (parallel) dsd processes involving opposite
55(44) edges (i.e., a pair related by a C2-symmetry
operation) converts one bisdisphenoid into another
bisdisphenoid through a square antiprismatic inter-
mediate. Thus, a bisdisphenoid, like the trigonal
bipyramid discussed above, is inherently fluxional.
(6) 4,4,4-Tricapped trigonal prism: The three edges
of the type 55(44) corresponding to the “vertical”
edges of the trigonal prism are degenerate. A dsd
process using one of these degenerate edges as the
switching edge involves a C4v 4-capped square anti-
prism intermediate. Nine-vertex systems are there-
fore inherently fluxional. (7) 4,4-Bicapped square
antiprism: This polyhedron has no degenerate edges
and therefore is inherently rigid. (8) Edge-coalesced
icosahedron: The four edges of the type 56(45) are
degenerate. This 11-vertex deltahedron is therefore
inherently fluxional. (9) Icosahedron: This highly
symmetrical polyhedron, like the octahedron, has no
degenerate edges and is therefore inherently rigid.

This simple analysis indicates that the 4-, 6-, 10-,
and 12-vertex deltahedra are inherently rigid; the 5-,
8-, 9-, and 11-vertex deltahedra are inherently flux-
ional; and the rigidity of the 7-vertex structure
depends on the energy difference between the two
most symmetrical 7-vertex deltahedra, namely, the
pentagonal bipyramid and the capped octahedron,
which is large in the case of deltahedral boranes. This
can be compared with experimental fluxionality
observations by 11B NMR on the deltahedral borane
anions BnHn

2- (6 e n e 12),75 where the 6-, 7-, 9-,
10-, and 12-vertex structures are found to be rigid
and the 8- and 11-vertex structures are found to be
fluxional. The only discrepancy between experiment
and these very simple topological criteria for flux-
ionality occurs in the 9-vertex structure B9H9

2-.
The discrepancy between the predictions of this

simple topological approach and experimental data
for B9H9

2- has led to the search for more detailed
criteria for the rigidity of the deltahedral boranes.
In this connection, Gimarc and Ott studied orbital
symmetry methods, particularly for the 5-,76 7-,77 and
9-vertex78 borane and carborane structures, recogniz-
ing that a topologically feasible dsd process is orbit-
ally forbidden if crossing of occupied and vacant
molecular orbitals (i.e., a “HOMO-LUMO crossing”)
occurs during the dsd process as illustrated in Figure
12c for the single dsd process of the trigonal bipyra-
mid. For such an orbitally forbidden process, which
occurs in the 5- and 9-vertex deltahedral boranes and
carboranes, the activation barrier separating initial
and final structures is likely to be large enough to
prevent this polyhedral isomerization.

The fluxionality of the B9H9
2- tricapped trigonal

prism has also recently been studied by computa-
tional methods.79 Thus, ab initio calculations at MP2/
6-31G*, B3LYP/6-31G*, and B3LYP/6-311+G** lev-
els indicate relatively high potential barriers for the
intramolecular rearrangement of B9H9

2- by the single
dsd process (28.4 kcal/mol) or even a double dsd
process (21.3 kcal/mol). However, its open-face pro-
tonated form B9H10

- was calculated to be highly
fluxional.

Some selection rules have been proposed for dis-
tinguishing between symmetry-allowed and sym-
metry-forbidden processes in deltahedral boranes,
carboranes, and related structures. Thus, Wales and
Stone80 distinguish between symmetry-allowed and
symmetry-forbidden processes by observing that a
HOMO-LUMO crossing occurs if the proposed tran-
sition state has a single atom lying on a principal Cn
rotational axis where n g 3. A more detailed selection
rule was observed by Mingos and Johnston.81 If the
four outer edges of the two fused triangular faces (i.e.,
the “diamond”) are symmetry equivalent, then a
single dsd process results in a pseudorotation of the
initial polyhedron by 90° (Figure 13a). However, if
the edges are not symmetry equivalent, then the
rearrangement results in a pseudoreflection of the
initial polyhedron (Figure 13b). Pseudorotations are
symmetry forbidden and have larger activation ener-
gies than pseudoreflections, which are symmetry
allowed.

III. Computational Studies on Deltahedral
Boranes

A. Early Computational Studies Based on Hu1ckel
Theory

The discovery of boron deltahedra in elemental
boron and metal borides and later in polyhedral
boranes generated an interest in computational stud-
ies on these structures as soon as suitable computa-
tional methods became available. The earliest com-
putational work on boron deltahedra was the 1954
study by Longuet-Higgins and Roberts13 on the B6
octahedra found in metal boride studies using the
secular determinants obtained from linear combina-
tions of atomic orbitals (LCAO). This work was
followed shortly by a study of boron icosahedra which
predicted the existence of a stable anionic icosahedral

Figure 13. (a) Pseudorotation. (b) Pseudoreflection.
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borane B12H12
2- several years before it was discov-

ered.14

The first systematic computational study on poly-
hedral boranes was reported in 1962 by Hoffmann
and Lipscomb.82 These authors studied a variety of
actual and conceivable BnHn polyhedra including the
tetrahedron (n ) 4), octahedron (n ) 6), cube (n )
8), bicapped square antiprism (n ) 10), cuboctahe-
dron (n ) 12), and icosahedron (n ) 12) using the
LCAO-MO Hückel method. Because of the peculiari-
ties of the polyhedral systems such as the inap-
plicability of the nearest neighbor assumptions of
Hückel theory in two-dimensional systems and the
increased number of parameters, new approaches to
the factorization of the secular equation needed to
be developed in order to make these calculations
feasible with the limited computing power available
at that time. In some of their calculations the full
“5n” set of five orbitals per cage atom (i.e., the H 1s
and all four B sp3 orbitals) was simplified to only the
four orbitals on each boron atom (the “4n” set) or even
only the three skeletal orbitals from each boron atom
(the “3n” set). Further simplification of the reduced
3n problem was gained by physical factorization of
the secular equation. In their “in-surface factoriza-
tion” method, the three boron sp3 internal hybrid
orbitals are rehybridized to give a radial orbital of
mostly s character pointed toward the center of the
polyhedron and two p orbitals directed arbitrarily
perpendicular to the axial direction, i.e., tangential
to the polyhedron circumsphere. The Hoffmann-
Lipscomb “in-surface factorization” then separates
the tangential (“surface”) and radial (“in”) interac-
tions and neglects any “in-surface” interactions so
that the 3n problem is factored into problems of
degree n (radial) and degree 2n (tangential). In
addition, Hoffmann and Lipscomb use an “equatorial-
apex factorization” for the bicapped prisms and
antiprisms to separate two apex atoms from n - 2
“equatorial” atoms and a “ring-polar factorization” for
bipyramids and pyramids to separate the axial atom
(pyramids) or atoms (bipyramids) from the “ring”
atoms at the base of the pyramid or in the equatorial
section of the bipyramid. This relates to the dissection
of bipyramids and pyramids into rings and caps in
order to apply the six interstitial electron rule of
Jemmis (section II.F).69

The Hoffmann-Lipscomb calculations82 predict
filled electronic shells and hence stable structures for
tetrahedral B4H4, octahedral B6H6

2-, pentagonal bi-
pyramidal B7H7

2-, cubical B8H8
2-, bicapped trigonal

antiprismatic B8H8
2-, bicapped square antiprismatic

B10H10
2-, pentagonal prismatic B10H10, cuboctahedral

B12H12
2-, and icosahedral B12H12

2-. At the time of
these calculations, only the bicapped square anti-
prismatic B10H10

2- and icosahedral B12H12
2- struc-

tures were known experimentally, so that these
Hoffmann-Lipscomb calculations predicted the sta-
bility of several of the other subsequently discovered
deltahedral BnHn

2- structures, e.g., those for n ) 6
(octahedron) and 7 (pentagonal bipyramid). Subse-
quent computational work by Hoffmann and Lip-
scomb83 using essentially the same methods were
used to provide information on the charge distribu-

tions and overlap populations of the boranes that
were then known. The Hoffmann-Lipscomb calcula-
tions also provide information on the energy param-
eters for both the bonding and antibonding orbitals
which are useful for testing graph-theory-derived
models for chemical bonding in deltahedral boranes.

These early Hoffmann-Lipscomb calculations on
polyhedral boranes led to the development of ex-
tended Hückel methods which have been applied to
a great variety of inorganic and organic structures.
One direction of the development of such computa-
tional methods has been to improve the parametriza-
tion of the diagonal Hamiltonian matrix elements
with numbers obtained from more exact model self-
consistent field (SCF) MO calculations on relatively
small molecules84 such as diborane in the case of
borane calculations.85 Using these methods, improved
results were obtained for calculations of experimental
energy quantities (total energies and ionization po-
tentials) for some of the simple boranes, e.g., BH3,
B2H6, B4H10, B5H9, and B10H14 (Figure 1). However,
use of these methods for calculation of the formal
charge distribution over the atoms turned out to be
somewhat dependent on the detailed calculational
technique owing partly to the noniterative nature of
the calculations.

Lipscomb and co-workers in subsequent work
investigated alternative computational methods for
deltahedral boranes and carboranes. Thus, they used
the “partial retention of diatomic differential overlap”
(PRDDO) method86 to examine the wave functions
for the boranes BnHn

2- and the corresponding car-
boranes C2Bn-2Hn in both canonical MOs and local-
ized MOs (LMOs).87 The value of the canonical MOs
lies in examining molecular properties such as ion-
ization potentials and reactivity sites based on charges.
The use of LMOs provides a method for examining
the relationship of rigorously computed valence struc-
tures to the simple valence bond structures predicted
by the Lipscomb topological models. In general, the
LMOs were found to correspond to delocalized topo-
logical structures or to sums of topologically allowed
structures, the latter case occurring to increase the
symmetry of the LMOs. Of interest is the observation
that the LMOs for the 5-vertex structure 1,5-C2B3H5
do not correspond to a structure with 3c-2e bonds but
instead to a structure with only three bonds to each
boron atom (Figure 10a).

Another approach for studying the electronic struc-
ture of boranes uses the localized three-center bonds
arising from the Lipscomb topological models (section
II.A) as the basis set for Hückel-type MO computa-
tions. Kettle and Tomlinson88 showed that this
method leads to the same pattern of MO energy levels
as the LCAO methods of Lipscomb. Subsequent
work89 showed that this method is a topologically
correct extension of Hückel theory to three dimen-
sions.

The next computational studies on the deltahedral
boranes were performed by Armstrong, Perkins, and
Stewart,90 who were the first to use iterative methods
for borane calculations. Their calculations were also
the first to consider all of the valence electrons and
the terminal groups on the boron atoms so that
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substituent effects, e.g., substitution of chlorine for
hydrogen, could be examined. In the case of the
deltahedral boranes, the closed-shell ground states
for deltahedral BnXn

2- (X ) H, n ) 6, 10, 12; X ) Cl,
n ) 6, 12) were confirmed.91 In B6H6

2- and B12H12
2-,

the excess negative charge from the dianion was
distributed between boron and hydrogen with a
preponderance toward the boron atom. This situation
is changed by the substitution of chlorine for hydro-
gen so that in B6Cl6

2- and B12Cl12
2- the chlorine has

the greater negative charge. Electron-density con-
tours in B6H6

2- show that the charge is concentrated
both at the center of the cage and in the centers of
the trigonal faces. This is consistent with more recent
computational studies on B6H7

-, which favor a face-
protonated structure over an edge-protonated struc-
ture.92 In the larger B10H10

2- and B12H12
2- deltahedra,

the electron density forms a symmetrical spherical
shell inside the cage with the density decreasing
toward the center. Thus, the electron densities from
the core and surface bonding are distinctly separate
in B6H6

2-, but in the large boranes the surface
bonding, which involves 2n bonding electrons, domi-
nates over the core bonding, which involves only two
electrons, so that separate concentration of electron
density for core bonding is no longer observed.

Because of the great conceptual value of Hückel
theory, refinements of Hückel theory have continued
even after the greatly improved availability of mod-
ern Gaussian ab initio computations. In this connec-
tion, Zhao and Gimarc93 developed a version of three-
dimensional Hückel theory developed from the
approximations of simple Hückel theory plus a few
additional assumptions but retaining the significance
of molecular topology. Their theory differentiates
between Coulomb integrals for radial (designated as
RR) and tangential orbitals (designated as RT) rather
than a single Coulomb integral R as used in eq 7. To
readjust the zero of energy so that MOs can be
interpreted as either bonding or antibonding orbitals
by the sign of the energy, the equation RR + 2RT ) 0
is used to recognize that there are twice as many
tangential orbitals as radial orbitals. Application of
this method to the BnHn

2- polyhedra leads to the
experimentally observed deltahedra (Figure 3) as the
lowest energy polyhedra. Furthermore, the lowest
energy structure for each n has n + 1 bonding MOs
that are completely occupied by electrons where all
antibonding MOs are vacant, thereby confirming the
n + 1 cluster electron pair rule leading to the
experimentally observed 2n + 2 skeletal electrons.

Wade and collaborators94 more recently continued
to use extended Hückel MO methods to investigate
stability patterns in deltahedral borane chemistry.
Calculations were carried out for published experi-
mental geometries and also for hypothetical struc-
tures in which all boron atoms lie on a spherical
surface and all deltahedral faces are equilateral
triangles with B-B ) 1.70 Å and B-H ) 1.19 Å.
These calculations were found to reproduce at least
semiquantitatively the patterns of chemical stability
for the observed BnHn

2- (6 e n e 12) ions and
qualitatively the stoichiometries and stabilities of the
observed BnXn neutral molecules. The authors sug-

gest that the patterns of chemical stability of the
deltahedral boranes are primarily the result of sym-
metry and topology and that while very sophisticated
ab initio calculations are necessary to reproduce the
detailed geometries of boranes, they are not needed
in order to understand in MO terms the species
observed (and not observed) as well as their relative
stabilities.

The SCF-XR scattered wave technique has been
used by Basiri and Pan95 for calculation of the MO
energies of the octahedral boranes B6H6

z- (z ) 0, 2,
and 4); this technique requires only a small fraction
of the computer time of ab initio Hartree-Fock LCAO
methods.96 These calculations confirm the stability
of B6H6

2- by 110.8 kJ/mol with respect to the mono-
anion and by 176.8 kJ/mol with respect to the neutral
molecule.

B. Semiempirical and Molecular Mechanics
Calculations on Deltahedral Boranes

Semiempirical computational methods using some
parameters determined by experiment were devel-
oped concurrently with ab initio methods. Although
semiempirical methods have now been largely dis-
placed by ab initio Gaussian methods using relatively
large basis sets and corrections that can be handled
by modern computers, the much smaller computa-
tional requirements for semiempirical methods still
make them useful for simple and rapid initial struc-
ture optimizations.

Dewar and McKee97 applied semiempirical compu-
tational methods to the study of boranes including
those with deltahedral structures. Their attempts to
parametrize the originally developed MINDO/3
method98 for boron failed, apparently owing to inad-
equacies of the INDO approximation on which the
MINDO/3 method is based. However, the more
recently developed MNDO (“modified neglect of di-
atomic overlap”) semiempirical method99 based on the
NDDO approximation100 was parametrized success-
fully for boron, and calculations were reported for the
deltahedral borane anions BnHn

2- (6 e n e 12).97 The
MNDO calculations reproduced the observed delta-
hedral geometries for all of these borane anions
except for B9H9

2-, where the MNDO calculations
suggest a C2v distorted capped square antiprism in
contrast to the observed D3h tricapped trigonal an-
tiprism. This discrepancy has been attributed to the
tendency of MNDO to underestimate the strengths
of 3c-2e bonds.

Allinger and co-workers applied their MM3 molec-
ular mechanics methods101 to the study of deltahedral
boranes having 7, 10, and 12 vertices. In the 7-vertex
deltahedral boranes and derivatives,102 the pentago-
nal bipyramidal cage was treated as a superimposi-
tion of a five-membered ring and apical (cap) groups
similar to the methods of Jemmis (Figure 10b).69 In
the 10- and 12-vertex deltahedral boranes and car-
boranes, the deltahedral cages were treated analo-
gously as a superposition of two rings and two
caps103,104 The chemical bonding between these struc-
tural building blocks was treated by Hill-like poten-
tials such as those normally used for a description
of nonbonded intra- and intermolecular interactions.
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In general, these calculations gave good agreement
with experimental data.

C. Gaussian ab Initio Computations on
Deltahedral Boranes and Carboranes

The development of Gaussian approximations to
atomic orbitals has had a major impact on the
availability and reliability of ab initio computational
methods. Computer programs for computational chem-
istry using Gaussian orbitals are now widely avail-
able. The first reported computation on polyhedral
boranes using Gaussian methods, i.e., contracted
Gaussian-type functions fitted to Slater-type orbitals,
was described in 1973 by Guest and Hillier.105

Integral evaluation was carried out by fitting each
Slater-type orbital to three Gaussian-type functions.
Extended basis set calculations on the C2B4H6 iso-
mers used double-ú basis of carbon and boron 2p
orbitals and hydrogen 1s orbitals. The electronic
structures of the closed deltahedral carboranes 1,5-
C2B3H5, 1,2-C2B4H6, 1,6-C2B4H6, and 2,4-C2B5H7 ob-
tained from such ab initio Gaussian computations
were compared with those obtained by semiempirical
methods. The ab initio extended basis set SCF MO
calculations were found to predict the observed order
of stability for the isomers of C2B4H6, whereas such
calculations using a minimal basis set or semi-
empirical methods incorrectly predicted the 1,2 iso-
mer to be the most stable. In these carboranes, the
carbon was found to have considerable negative
charge by a Mulliken analysis with the negative
character increasing with an increased basis.

A much more comprehensive series of ab initio
calculations on carboranes was reported in 1986 by
Ott and Gimarc,106 who used the Gaussian-80 pro-
gram with an STO-3G basis set rather than a larger
basis set for computations on 29 of the 52 possible
carboranes of the type C2Bn-2Hn (5 e n e 12). All
structures were optimized using a gradient optimiza-
tion method starting with B-B distances of 1.69 Å
and B-H distances of 1.11 Å in the obvious delta-
hedra for n ) 5 (trigonal bipyramid), 6 (octahedron),
7 (pentagonal bipyramid), 10 (bicapped square anti-
prism), and 12 (octahedron) for the most regular
deltahedra.107 For carboranes derived from less regu-
lar deltahedra (n ) 8, 9, and 11), averages of
experimental distances were taken in the starting
structures. The calculated bond distances in the
optimized structures agreed with the experimental
distances within (0.04 Å for 82% of the B-B, C-B,
C-H, and B-H bond distances. These ab initio
results also agree with the predictions made by
Williams108 using empirical valence rules except in
the case of the isomers of C2B6H8. These calculations
of Gimarc and co-workers were later109 extended to
the corresponding deltahedral boranes BnHn

2- (5 e
n e 12) in order to test graph-theory-derived models
of three-dimensional aromaticity.

In 1986 Fowler110 reported some Gaussian calcula-
tions on the octahedral borane B6H6

2- using the
4-31G, 6-31G, and 6-31G* basis sets, with the largest
set (6-31G*) containing a set of d polarization func-
tions on each boron atom. The order of the MOs was
the same for all of the basis sets and predict HOMO-

LUMO gaps >14 eV for B6H6
2-. The shapes and

locations of the nodes of the skeletal bonding MOs
were consistent with the Sσ, Pσ, and Dσ designations
of spherical harmonics predicted by tensor surface
harmonic theory (section II.E).

Gaussian methods were also used in the restricted
Hartree-Fock calculations for the isoelectronic series
of icosahedral boranes and carboranes B12H12

2-,
CB11H12

-, and 1,12-C2B10H12 reported in 1988 by
Green, Switendick, and Emin.111 For B12H12

2-, the
STO-3G basis set did not produce enough bonding
MOs whereas the larger 3-21G and 4-31G* basis sets
both produced the correct number of bound one-
electron orbitals, namely, 37 corresponding to 12
bonding MOs for the external B-H bonds, 12 bonding
MOs for the icosahedral surface bonding, 1 bonding
MO for the icosahedral core bonding, and 12 orbitals
for the inner boron 1s electrons. The two larger basis
sets also produced identical valence MO energy
orderings and energies which agreed to a few tenths
of an electronvolt as well as very similar optimized
geometries, thereby suggesting that the smaller
3-21G basis set without the boron and carbon polar-
ization functions used in the larger 4-31G* basis set
was adequate for the study of these icosahedral
molecules.

Zahradnik, Balaji, and Michl112 also reported an
SCF study of 10-vertex and 12-vertex polyhedral
boranes and heteroboranes. Thus, they obtained
completely optimized geometries for B10H10

2-, B12H12
2-,

and their isoelectronic analogues with a single het-
eroatom (C, N, O, Al, Si, P, S) using the 3-21G and
6-31G* basis sets. For the anionic and dianionic
species, the geometry optimization was also carried
out using the 6-31+G* basis set. The harmonic
vibrational frequencies were obtained at the Har-
tree-Fock 3-21G level. The calculated results com-
pared well with experiment.

Bader and Legare113 used SCF calculations in
Gaussian 88 with a contracted (9s,5p) basis set
supplemented with polarization functions to calculate
the energies, geometries, and charge distribution of
diverse known boranes including the deltahedral
BnHn

2- (n ) 6, 7, 12) and the carboranes C2Bn-2Hn
(n ) 5, 6). Good agreement was obtained between the
experimental and calculated geometries. Molecular
structures were assigned on the basis of the bond
paths defined by the topology of the charge density
using the theory of atoms in molecules.114 The stabil-
ity of the borane structures based on polyhedra and
polyhedral fragments is considered to be a conse-
quence of the delocalization of charge over the
surfaces of the three- and four-membered rings of
atoms that result from the formation of bonds of
reduced order, a delocalization that is itself essential
to the formation of the ring bonds and related to the
concept of multicenter bonding (section II.A).

Jemmis and collaborators115 extended the study of
the topography of deltahedral boranes, carboranes,
and silaboranes having 5-7 vertices using ab initio
computations at the 6-31G* level with Gaussian 90.
Single-point calculations using better quality triple-ú
basis116 were then performed on the optimized struc-
tures. The resulting molecular wave functions were
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used for the study of the topographical features such
as the critical points, i.e., the point where the
gradient of the scalar field is zero. No B-B bond
critical points were found to exist in the equatorial
plane for the 5-vertex deltahedra, suggesting local-
ized bonding without any B-B equatorial interac-
tions. The charge density was found to be larger on
the exterior of the deltahedron than in the interior,
indicative of the major role of surface-delocalized
bonding. However, all of the borane anions exhibited
some localization of the electron density in the
centroid of the deltahedron corresponding to core
bonding.

Another comprehensive computational study on the
deltahedral boranes BnHn

2- and carboranes C2Bn-2Hn
(5 e n e 12) using ab initio restricted Hartree-Fock
methods with STO-6G and MIDI-4 basis sets was
reported by Takano, Izuho, and Hosoya117 in 1992.
By the use of double-ú MOs of high quality, the
electron densities in these compounds were calcu-
lated and analyzed in detail through spherical charge
analysis118 and electron density contour mapping.
The external B-H bonds in the deltahedral boranes
and carboranes were found to have almost similar
homopolar bonding character of a typical 2c-2e bond.
Inspection of the contour maps of the deformation
electron density on a variety of planes in the delta-
hedral molecular skeleton reveals that the central
planar ring in a deltahedral molecule (e.g., an
equatorial square in an octahedron or an equatorial
pentagon in a pentagonal bipyramid) has a charge
distribution similar to that in two-dimensional planar
cyclic conjugated systems. This is related to the six
interstitial electron rule of Jemmis (section II.F)69

discussed above.
Recently Schleyer and co-workers119 used the cal-

culation of nucleus-independent chemical shifts (NICS)
of the deltahedral boranes BnHn

2- (5 e n e 12) to
investigate magnetic criteria for aromaticity. NICS
is based on the absolute chemical shieldings com-
puted at the cage centers. The quantitative cor-
respondence of NICS, diamagnetic susceptibility
exaltation (Λ), aromatic stabilization, and geometric
criteria have been demonstrated for five-membered
aromatic and antiaromatic heterocycles.120 Such cal-
culations on the deltahedral boranes indicate large
negative NICS values at the cage centers suggesting
pronounced three-dimensional delocalization in such
structures. The most symmetric B12H12

2- (Ih) and
B6H6

2- (Oh) have the largest NICS values followed
by B10H10

2-.
Schleyer and Najafian121 recently reported com-

prehensive ab initio calculations on the deltahedral
boranes BnHn

2- (5 e n e 12) using density functional
methods at the B3LYP/6-311+G** level to examine
the energetic relationships. The acetylene-like B2H2

2-

was employed and the BHinc increment energy was
taken as the difference between B3H5 (C2v, planar)
and B2H4 (D2h, ethylene-like) in order to study the
energies of the following reaction

All such reaction energies were found to be exother-

mic. Furthermore, the stabilities of the deltahedral
boranes were found to fall into the following four
groups of generally decreasing stability: (1) B12H12

2-

and B6H6
2-; (2) B10H10

2- and B7H7
2-; (3) B8H8

2- and
B9H9

2-; (4) B11H11
2- and B5H5

2-.
Schleyer and Najafian122 also recently performed

ab initio calculations at the RMP2(fc)/6-31G* level
on the deltahedral carboranes CBn-1Hn

- and
C2Bn-2Hn

2- (5 e n e 12). As was the case with the
isoelectronic carbon-free deltahedral boranes, the
stabilities of the members of these series of carbo-
ranes were found to increase with increasing cluster
size from 5 to 12 vertices characteristic of three-
dimensional aromaticity. The rather large NICS and
the magnetic susceptibilities, which correspond well
with one another, also show all of these delta-
hedral carboranes to exhibit three-dimensional aro-
maticity.

Jemmis and collaborators found through ab initio
computations using Gaussian 90 and 94 that the
relative isomer stabilities of some deltahedral het-
eroboranes change drastically upon substitution of
carbon by silicon.123-125 In the case of octahedral
E2B4H6, the antipodal (1,6) carborane (E ) C) is found
to be more stable than the adjacent (1,2) isomer,
whereas these relative stabilities are reversed for the
silicon analogues (E ) Si).123 Similarly, for the
7-vertex pentagonal bipyramidal E2B5H7, the relative
stabilities for the carborane isomers (E ) C) are
nonadjacent (2,4) > adjacent (1,2 and 2,3) > antipodal
(1,7) whereas the stability sequence for the corre-
sponding silaborane isomers is exactly the opposite.123

For the 8-vertex E2B6H8 isomers (E ) C, Si, Ge, Sn,
Pb), the most stable isomer in all cases is the 1,7-
bisdisphenoidal isomer with the heteroatoms at
nonadjacent degree 4 vertices. However, a hexagonal
bipyramidal isomer of Si2B6H8 with the silicon atoms
at the degree 6 axial vertices is found to be only 17.2
kcal/mol higher in energy than the most stable 1,7-
bisdisphenoidal isomer.124 For the icosahedral het-
eroboranes E2B10H12, the relative isomer stabilities
remain antipodal (1,12) > nonadjacent (1,7) > adja-
cent (1,2) when carbon is replaced by silicon, although
the energy differences are significantly smaller for
the silicon derivatives.125

McKee, Bühl, Charkin, and Schleyer used Gauss-
ian methods at the MP2/6-31G* level to study four-
center two-electron (4c-2e) bonding in deltahedral
boranes and carboranes.92 They found face-capping
using a 4c-2e B3H bond to be more favorable than
edge-capping using a 3c-2e B2H bond in the octahe-
dral boranes B6H7

- and CB5H7 by 12.1 and 16.8 kcal/
mol, respectively.

In very recent work, McKee, Wang, and Schleyer126

reported computational studies on the neutral bo-
ranes BnHn (n ) 5-13, 16, 19, 22) and the borane
radical anions BnHn

- (n ) 5-13) at the B3LYP/6-
31G* and higher levels of density functional theory.
The favored structures for the neutral boranes BnHn
with n ) 3p + 1 (p ) 2-7) were all found to have
one boron atom on a 3-fold axis. Thus, the favored
structure for B7H7 is a capped octahedron rather than
the pentagonal bipyramid experimentally observed
for the dianion B7H7

2-. Loss of one electron from

B2H2
2- + (n - 2) BHinc f BnHn

2- (5 e n e 12)
(12)
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BnHn
2- (n ) 5-13) is predicted to be exothermic

except for B12H12
2-.

Computational studies have also been used to test
mechanistic models of deltahedral borane isomeriza-
tions. In this connection, McKee127 has shown by ab
initio calculations using Gaussian 82 or 86 program
systems at several levels up to MP4/6-31G*+ZPC//
6-31G* that the isomerization of 1,2-C2B4H6 to 1,6-
C2B4H6 proceeds in two steps with a benzvalene-like
intermediate. The first step, the rate-determining
step, is a modified dsd step where the symmetry of
the transition state is reduced from C2v to C2, thereby
changing the step from orbitally forbidden (in C2v
symmetry) to orbitally allowed (in C2 symmetry). The
second step is a concerted dsd step which is also
known as a local bond rotation. The activation barrier
was calculated to be 44.7 kcal/mol, in good agreement
with an experimental estimate (42-45 kcal/mol).

D. Computational Studies of “Classical” versus
“Nonclassical” Bonding Models for 5-Vertex
Deltahedral Boranes

Computational methods have recently been used
to study bonding delocalization in 5-vertex delta-
hedral boranes in which the two degree 3 axial
vertices of the trigonal bipyramid suggest localized
“classical” bonding models with three-coordinate
boron similar to (CH3)3B (section II.D and Figure
10a). Geometrical optimizations using ab initio MO
calculations of Burdett and Eisenstein128 at the
Hartree-Fock and MP2 level on bipyramidal
(BX)n(Y)2 systems (n ) 3 [trigonal bipyramid] and 4
[octahedron]) suggest that the equatorial B-B dis-
tances for a given polyhedron correlate broadly with
the electronegativity of the axial atoms. For the
trigonal bipyramidal molecules, the B-B distances
for (BH)3N2 are calculated to be quite short (1.65 Å),
suggesting a globally delocalized structure, whereas
the B-B distances for (BNH2)3(SiH)2 are calculated
to be significantly longer (1.96 Å), suggesting a local-
ized bonding model with three-coordinate boron in
the latter case. This approach for the study of trigonal
bipyramidal boranes was extended by Subramanian,
Schleyer, and Dransfeld,129 who performed bonding
(NLMO bond orders and Bader’s topographical analy-
sis113,114), energetic (homodesmotically computed sta-
bilization energies), and magnetic (diamagnetic sus-
ceptibility exaltation and NICS) analyses for the
trigonal bipyramidal 1,5-X2B3Y3 (X ) N, CH, P, SiH;
Y ) NH2, CH3, H). Their work suggests that “non-
classical” versus “classical” bonding for 5-vertex tri-
gonal bipyramidal boranes (Figure 10a) is determined
by the substituents on the equatorial boron atoms.

Another recent computational study on 5-vertex
boranes used SCF, DFT, MP2 CCSD, and CCSD(T)
calculations with three different basis sets and the
three-parameter hybrid exchange-correlation func-
tion of Becke (B3LYP) for the DFT calculations.130

For the investigation of the deformability of the
polyhedron of C2B3H5, the equilibrium structures
together with the B-B bond strengths and the
chemical shifts for C2B3H3Li2, C2B3H2Li3, C2B3H2F3,
C2B3F5, C2B3H3Cl2, C2B3H2Cl3, C2B3H3(NH2)2, and
C2B3H2(NH2)3 were calculated. The calculated B-B

distances were found to vary from 1.775 Å in C2B3H3-
Li2 to 1.9523 Å in C2B3F5. The molecules C2B3H3F2,
C2B3H2F3, C2B3F5, C2B3H2Cl3, and C2B3H2(NH2)3
were all suggested by these calculations to exhibit
“classical” structures without multicenter bonding,
whereas the lithium-substituted derivatives C2B3H3-
Li2 and C2B3Li5 were all suggested to have “nonclas-
sical” structures (Figure 10a). The remaining 5-vertex
boranes appeared to exhibit bonding intermediate
between the “classical” and “nonclassical” models.

A recent ab initio computational study by McKee131

on BnHn and Bn(NH2)n (n ) 3-6) species at the HF/
6-31G(d), MP2/6-31G(d), and B3LYP/6-31G(d) levels
provides a comparison of “classical” and “nonclassi-
cal” structures for some of the smaller deltahedral
boranes with only 2n rather than the 2n + 2 skeletal
electrons required for global delocalization. For early
members of the BnHn series (n ) 3-5), the lowest
energy isomer contains one or more 3c-2e B-B-B
bonds. Closed deltahedral structures become more
stable only with B6H6, again suggesting the role of
degree 3 vertices in preventing global delocalization
of deltahedra. When hydrogens are replaced by amino
groups, the classical nonplanar ring structure be-
comes more stable than the nonclassical deltahedron
for Bn(NH2)n (n ) 4-6).

The question of “classical” versus “nonclassical”
bonding in 5-vertex deltahedral boranes was studied
experimentally by determining the molecular and
crystal structures and electron density distribution
for a single crystal of 1,5-Et2C2B3H3 using high-
resolution X-ray diffraction at 120 K.132 The mean
B-C and B-B distances were found to be 1.571 and
1.876 Å, respectively, and the axial C‚‚‚C distance
was 2.272 Å. Deformation electron density maps
showed charge accumulation in the skeletal B-C
bonds, and these bonds were found to be essentially
bent outward of the C2B3 cage. However, no charge
accumulation was detected in the B-B bonds, thus
indicating the absence of direct B-B interactions.
Positive and delocalized deformation electron density
was found in all of the B2C triangular faces of the
C2B3 trigonal bipyramid, thereby indicating a con-
tribution of the multicenter bonding in the electronic
structure of 1,5-Et2C2B3H3.

E. Use of Computations to Test Topological
Models for the Chemical Bonding in Deltahedral
Boranes

The results from some of the less complicated com-
putations of MO energy parameters of deltahedral
boranes can be used to test topological models of their
chemical bonding (section II.C). Thus, the MO energy
parameters for structures exhibiting delocalized bond-
ing such as the deltahedral boranes can be related
to the eigenvalues of the adjacency matrix of the
underlying graph G by eq 7 (section II.D). However,
any actual structure provides too few relationships
to determine fully all of the three parameters R, â,
and S in this equation. Therefore, some assumptions
concerning the values of R, â, and S are necessary
for any comparisons to be feasible. The generally used
approach first assumes a zero value for S and then
determines R from the midpoint of all of the molec-
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ular energies by taking an appropriately weighted
average so that eq 7 is reduced to

The third parameter, â, can then be determined from
specific orbital energies.

To relate a given computation on a deltahedral
borane to topological models for its chemical bonding,
computed values for all of the molecular orbital
energy parameters are required including those for
the unfilled antibonding (virtual) orbitals.109 Having
such information, the first step is to calculate R, the
energy “zero point” (eq 7). In the case of a deltahedral
borane anion BnHn

2-, this can be done by taking the
mean of the energy parameters for all 5n molecular
orbitals arising from the 4n atomic orbitals of the n
sp3 boron manifolds and the n s orbitals of the n
hydrogen atoms. In taking this mean, the degenerate
orbitals of the E, T, G, and H representations are
given the weights 2, 3, 4, and 5, respectively, corre-
sponding to their degeneracies. Hence, the parameter
R becomes

In eq 13, gk is the degeneracy of energy level k and
the summation is over all molecular orbitals k. It is
convenient to tabulate orbital energies as Ek′ )
Ek - R, such that

The surface energy unit, âs, can also be estimated at
this stage as the degeneracy-weighted average dis-
tance of the pure surface orbitals from the energy
zero point R. At this stage an unavoidable sampling
error is introduced since only the pure surface
orbitals can be included in the averages. The energy
parameters of the other surface orbitals must be
excluded from this average since they are distorted
by substantial core-surface and external-surface
mixing.

Further analysis of the computed energy param-
eters either requires some special symmetry such as
that found in octahedral B6H6

2- or icosahedral
B12H12

2- or some further assumptions concerning the
chemical bonding topology for less symmetrical sys-
tems in order to minimize the number of independent
unknowns to be determined. In the cases of B6H6

2-

and B12H12
2-, the core energy units âc and the

nonadjacent atom unique internal orbital interactions

can be estimated from the energy parameters of the
principal core orbital and a second core orbital, which
does not mix with the surface orbitals. Possible errors
arising from core-external orbital interactions do not
appear to be large.

To apply this method it is necessary to know the
irreducible representations corresponding to Γσ for
the core and external orbitals and Γπ for the surface
orbitals for the deltahedra of interest (Table 3). The
pure surface orbitals are starred in Table 3; these
orbitals correspond to irreducible representations
found in Γπ but not in Γσ.

The following computations on B6H6
2- and B12H12

2-

have been analyzed by this method:109 (1) Early
extended Hückel computations by Hoffmann and
Lipscomb82 using a Slater orbital basis set (HL5n in
Table 4); (2) Self-consistent molecular orbital com-
putations by Armstrong, Perkins, and Stewart90 also
using a Slater orbital basis set (APS in Table 4); (3)
Ab initio self-consistent field molecular orbital com-
putations by Gimarc and collaborators109 using a
Gaussian 82 program with a STO-3G basis set (GD
in Table 4).

The method for analyzing these computations on
B6H6

2- is summarized below, and the results are
given in Table 4. An analogous but more complicated
method can be used to analyze similar computations
of icosahedral boranes such as B12H12

2-. Similar
analyses of the computations on less symmetrical
BnHn

2- deltahedra do not appear to be feasible since
the lower symmetry leads to a larger number of
independent parameters and thus highly under-
determined systems of equations.

Table 3. Orbital Representations for Deltahedra

deltahedron Γσ (core and external orbitals) Γπ (surface orbitals)

octahedron A1g+T1u+Eg Τ1u+T2g*+T2u*+T1g*
pentagonal bipyramid 2Α1′+E1′+E2′+A2′′ A2′*+2E1′+E2′+A2′′+2E1′′*+E2′′*
bisdisphenoid 2A1+2B2+2E 2A1+2A2*+2B1*+2B2+4E
4,4,4-tricapped trigonal prism 2A1′+2E′+A2′′+E′′ A1′+2A2′*+3E′+A1′′*+2A2′′+3E′′
4,4 bicapped square antiprism 2A1+2B2+E1+E2+E3 A2+A2*+B1*+B2+3E1+2E2+3E3
icosahedron Ag+T1u+T2u+Hg T1u+Hg+Gu*+Gg*+Hu*+T1g*

Table 4. Analysis of Computationsa on Octahedral
B6H6

2-

HL5n APS GD

core orbitals
A1g (principal) +3.210 -50.3 -1.126
Eg -0.888 +13.6 +0.470
T1u (actual) -0.844 11.3 -0.848
T1u (effect of

mixing removed)
(-0.478) (10.1)

pure surface orbitals
T2g +0.493 -5.5 -0.486
T2u -0.416 +9.8 +0.198
T1g -0.671 +11.7 +0.548

derived parameters
R 0 +7.2 +0.675
âs 0.527 -8.1 -0.429
âc 0.683 -10.7 -0.266
âc/âs 1.296 1.320 0.620
t 0.700 0.700 0.233
∆E(T1u) 0.366 -1.2
a Energy units: GD, hartrees; APS, electronvolts; HL5N,

dimensionless quantities given by (R-Ek)/(K-Ek) where K is
the proportionality constant between resonance integral â and
overlap S: ârs ) KSrs.

Ek ≈ xkâ (12)

R )

∑
k

gkEk

∑
k

gk

(13)

∑
k

Ek′ ) 0 (14)
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To study the data for octahedral B6H6
2-, consider

an octahedrally weighted K6 graph (Figure 9) having
12 edges of unit weight corresponding to the octahe-
dron edges (cis interactions) and the remaining 3
edges of weight t corresponding to the three octahe-
dron antipodal vertex pairs (trans interactions).109

The spectrum of this graph has a nondegenerate
eigenvalue 4 + t corresponding to the A1g principal
core orbital, a triply degenerate eigenvalue -t cor-
responding to the triply degenerate T1u core molec-
ular orbital, and a doubly degenerate -2 + t eigen-
value corresponding to the doubly degenerate Eg core
molecular orbital (Figure 9). Note that any positive
value of t (up to +2) is sufficient to lead to only one
positive eigenvalue, namely, the 4 + t eigenvalue of
the Ag orbital, and five negative eigenvalues, namely,
the -t eigenvalues of the triply degenerate T1u orbital
and the -2 + t eigenvalues of the doubly degenerate
Eg orbital. This indicates that any reasonable positive
trans interaction in an octahedron gives the same
distribution of bonding and antibonding orbitals,
namely, 1 and 5, respectively, as an unweighted (t )
1) K6 graph. Thus, for octahedral boranes, the num-
bers of bonding and antibonding orbitals are insensi-
tive to the value taken for t. Note also that setting t
) 0 leads to the spectrum of the octahedron (+4, 0,
0, 0, -2, -2) which is the D6 graph whereas setting
t ) 1 leads to the spectrum of the K6 complete graph
(+5, -1, -1, -1, -1, -1).

The spectrum of the octahedrally weighted K6
complete graph indicates that in the absence of core-
surface mixing, eq 13 for the energy parameters of
the octahedral core orbitals in B6H6

2- relative to R
becomes the equations

Since the A1g and Eg orbitals are pure core orbitals
(i.e., there are no surface orbitals having these
irreducible representations, see Table 3), eqs 15a and
15c can be used to calculate the two parameters t and
âc corresponding to the E(A1g) bonding and E(Eg)
antibonding energy parameters from a given com-
putation, provided R ) 0 or is already known.
Substitution of these calculated values for t and âc
in eq 15b then gives a hypothetical value for E(T1u)c
in the absence of core-surface mixing. Comparison
of this hypothetical value with the computed value
for the T1u core orbitals determines ∆E(T1u).

A related approach can be used to compare the
computed octahedral surface orbital energy param-
eters with the ideal values arising from the graph-
theory-derived method. In this case, the ideal surface
orbital energy parameters are the following, with âs
designating the surface orbital energy unit

The following appropriately weighted mean of the

pure surface orbitals T2g, T2u, and T1g derived from
eq 14 can be used to determine âs

The energy parameter E(T1u)s is not included in this
mean because of the uncertainty in the core-surface
mixing parameter ∆E(T1u), obtained as outlined
above, which must be subtracted from the value of
E(T1u) obtained from the actual computation.

Application of these methods for the topological
analysis of various computations on octahedral B6H6

2-

(Table 4) and icosahedral B12H12
2- leads to the

following observations. (1) The Hoffmann-Lipscomb
LCAO-MO extended Hückel computations82 and the
Armstrong-Perkins-Stewart self-consistent molec-
ular orbital computations,90 both of which use Slater-
type orbitals directly, give very similar values of
âc/âs and t, particularly in the case of octahedral
B6H6

2-. (2) The SCF-MO ab initio Gaussian 82
computations, which approximate Slater-type orbit-
als with a sum of Gaussians,109 give much lower
values of both âc/âs and the nonadjacent core orbital
interaction parameters (t for B6H6

2- and m for
B12H12

2-) than the computations using Slater orbitals
directly. This indicates that the representation of
Slater-type orbitals by a sum of Gaussians as is
typical in modern ab initio computations leads to
significantly weaker apparent core bonding approxi-
mated more closely by deltahedral (Dn) rather than
complete Kn topology, probably because Gaussian
functions of the type eRr2 fall off more rapidly at longer
distances than Slater functions of the type e-úr. (3)
The T1u orbitals, which, if pure, would be nonbonding
in octahedral (D6) core bonding topology for B6H6

2-

and bonding in icosahedral (D12) core bonding topol-
ogy for B12H12

2- become antibonding through core-
surface mixing. Because of this feature, the simpler
graph-theory-derived model using complete core bond-
ing topology where Gc ) Kn (section II.D) gives the
correct numbers of bonding and antibonding orbitals
for the deltahedral boranes, even though analyses of
MO energy parameters from computations suggest
that the complete graph Kn is a poor approximation
of the actual Gc corresponding to the computations
using Gaussian orbitals.

Qualitative TSH theory (section II.E) has also been
tested computationally by using it as a basis for so-
called extended tensor surface harmonic (ETSH)
calculations of the electronic structure and bonding
in deltahedral boranes.133 The borane deltahedron is
treated as pseudospherical, but in ETSH, individual
orbital energies are calculated including surface-core
interaction effects. The assumptions of TSH theory
are then justified by showing that whereas inclusion
of core-surface interaction is necessary for correct
electron counts, the tight-binding approximation does
not lead to incorrect results. The results from the
ETSH calculations were found to be compatible with
qualitative TSH theory but of extended Hückel
accuracy. Energy levels of the correct numbers and
degeneracies were obtained for deltahedral boranes
giving theoretical and computational support for the

E(A1g) ) (4 + t)âc (15a)

E(T1u)c ) -tâc (15b)

E(Eg) ) (-2 + t)âc (15c)

E(T2g) ) E(T1u)s ) âs (16a)

E(T2u) ) E(T1g) ) -âs (16b)

âs ) 1/2{-1/2[E(T2u) + E(T1g)] + E(T2g)} (17)
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empirical electron-counting rules and rationalizations
of departures from them.

F. Some Experimental Tests of Computational
and Topological Models of Deltahedral Borane
Chemical Bonding

Photoelectron spectroscopy is a useful method for
determining MO energy parameters experimentally
for comparison with computational results and to-
pological bonding models. In this connection, Vondrák
and collaborators134 measured the He I photoelectron
spectra of a variety of 10- and 12-vertex deltahedral
carboranes and thiaboranes. Semiempirical calcula-
tions suggest that the low ionization energy bands
correspond predominantly to B-H and C-H MOs.
In deltahedral carboranes with chlorines, experimen-
tal evidence for conjugative interaction of cluster
π-type orbitals with the Cl nonbonding orbitals was
obtained. The icosahedral thiaborane 1-SB11H11 ex-
hibited five well-resolved band systems that were
assigned to F(surface), D(surface + B-H), F(surface),
P(B-H), and F(B-H) orbitals of TSH theory in the
limit of spherical symmetry.

The oscillator strength spectra in the region of
boron and carbon 1s excitations in the three isomeric
icosahedral carboranes C2B10H12 have been derived
from inner-shell electron energy loss spectra (ISEELS)
recorded under electric dipole-scattering conditions.135

The spectral features were assigned on the basis of
comparisons with spectral predictions derived from
the results of ab initio and extended Hückel MO
calculations. The isomeric and core level variations
in the discrete core excitations were related to
changes in orbital symmetries as well as variations
in electron localization in these isomers. The ioniza-
tion efficiency in the region of the boron and carbon
1s edges was determined.

A topological analysis of the electron density dis-
tribution, F(r), in crystalline icosahedral 8,9,10,12-
C2B10H8F4 has been performed using high-resolution
low-temperature (120 K) X-ray diffraction data and
a multipole model for data refinement.136 Deforma-
tion electron density maps as well as maps of the
Laplacian of F(r) showed that the electron density is
essentially delocalized over the surface of the cage
and locally depleted in the center, suggesting the
dominance of surface bonding involving 24 bonding
electrons relative to core bonding involving only 2
bonding electrons. All B-B and B-C bonds in the
icosahedron were characterized by significant bend-
ing, which was evident by shifts of their bond critical
points from the straight lines between bonded atoms.
Comparison of these data with corresponding ab
initio calculations on small deltahedral boranes sug-
gested that the electron-withdrawing of the fluorine
substituents causes considerable redistribution of the
electron density in the molecule, which, in particular,
is reflected in the shift of F(r) from the more electron-
rich C-C bonds to the B-C bonds.

McLemore, Dixon, and Strauss137 also reported
some ab initio DFT calculations on fluorinated car-
boranes for comparison with experimental data on
the site of fluorine substitution upon polyfluorination
of CB11H12

- and CB9H10
-. These calculations predict

that 2-CB11H11F- is marginally more stable than
7-CB11H11F- or 12-CB11H11F- despite the observation
that 12-CB11H11F- (the “antipodal” or “para” isomer)
is the only isomer formed when CB11H12

- is fluori-
nated with liquid anhydrous HF. These calculations
thus suggest kinetic rather than thermodynamic
control for the regioselective fluorination of CB11H12

-.

IV. Other Polyhedral Boron Derivatives

A. Electron-Rich (Hyperelectronic) Polyhedral
Boranes: Nido and Arachno Structures

Electron-rich or hyperelectronic polyhedral boranes
are those containing more than the 2n + 2 skeletal
electrons required for globally delocalized n-vertex
deltahedra without vertices of degree 3. Electron-
rich boranes include the well-known families of nido
compounds having 2n + 4 skeletal electrons and
arachno compounds having 2n + 6 skeletal electrons
(Figure 14).38 Examples of nido boranes include
several relatively stable neutral binary boron hy-
drides of the general formula BnHn+4 with 2n + 4
skeletal electrons, e.g., B5H9, B6H10, and B10H14
(Figure 1) originally discovered by Stock.1 Several
arachno neutral binary boron hydrides of the general
formula BnHn+6, such as B4H10 and B5H11, were also
discovered by Stock. Even at the time of their
discovery, they were recognized to be generally less
stable than the binary nido boron hydrides. Thus, in
the early days of borane chemistry,1 B5H9 was called

Figure 14. Hyperelectronic (electron-rich) polyhedra or
polyhedral fragments having 2n + 4 (nido) or 2n + 6
(arachno) skeletal electrons obtained by excision of one or
two vertices from an octahedron, pentagonal bipyramid,
or icosahedron.
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“stable pentaborane” and B5H11 was called “unstable
pentaborane”.

The nido boranes all have structures derived from
the most spherical deltahedra (Figure 3) by loss of a
vertex of highest degree (i.e., highest connectivity).
In the resulting nido polyhedron, all but one of the
faces are triangular; the unique nontriangular face
may be regarded as a hole. Analogously, the arachno
polyhedra are derived from the most spherical delta-
hedra (Figure 3) by loss of two adjacent vertices of
relatively high connectivity. They have either two
nontriangular faces or one large nontriangular face
(i.e., two holes or one large bent hole). Thus, succes-
sive additions of electron pairs to a closed 2n + 2
skeletal electron deltahedron result in successive
punctures of the deltahedral surface to give holes
(faces) having more than three edges by a process
conveniently called polyhedral puncture. The open
polyhedral networks can also be considered to arise
by excision of one or more vertices along with all of
the edges leading to them from a closed deltahedron
having m > n vertices by a process conveniently
called polyhedral excision (Figure 14).

Treatment of the skeletal bonding topology in
electron-rich polyhedra, even the nido polyhedra with
only one nontriangular face and 2n + 4 skeletal
electrons, is considerably more complicated than the
treatment of the skeletal bonding topology of delta-
hedra discussed above. The vertex atoms in electron-
rich polyhedra may be divided into the following two
sets: border vertex atoms which are vertices of the
one face containing more than three edges (i.e., they
are at the border of the single hole) and interior
vertex atoms which form vertices of only triangular
faces. For example, in a square pyramid (e.g., B5H9
in Figure 14), which is the simplest example of a nido
polyhedron, the four basal vertices are the border
vertices since they all border the square “hole”, i.e.,
the base of the square pyramid. However, the single
apical vertex of the square pyramid is an interior
vertex since it is a vertex where only triangular faces
meet. The external and twin internal orbitals of the
border vertex atoms are taken to be sp2 hybrids. The
unique internal orbitals of the border vertex atoms
will thus be p orbitals. The external and unique
internal orbitals of the interior vertex atoms are
taken to be sp hybrids in accord with the treatment
of closed deltahedra discussed in section II.D. The

twin internal orbitals of the interior vertex atoms
must therefore be p orbitals. Note that in the nido
polyhedra the hybridization of the border vertex
atoms is the same as that of the vertex atoms of
polygonal systems (e.g., benzene) whereas the hy-
bridization of the interior vertex atoms is the same
as that of the vertex atoms of deltahedral systems.
A chemical consequence of the similar vertex atom
hybridizations in polygons and the borders of nido
polyhedra is the ability of both planar polygonal
hydrocarbons (e.g., cyclopentadienyl and benzene)
and the border atoms of nido carboranes138 to form
chemical bonds with transition metals of similar
types involving interaction of the transition metal
with all of the atoms of the planar polygon or the
border atoms of the polygonal hole of the nido
polyhedron (Figure 15).

Nido polyhedra can be classified into two funda-
mental types: the pyramids with only one interior
vertex (the apex) and the nonpyramids with more
than one interior vertex. If n is the total number of
vertices and v is the number of interior vertices in
a nonpyramidal nido polyhedron, the interactions
between the internal orbitals which generate bonding
orbitals are of the following three different types. (1)
The 2(n - v) twin internal orbitals of the border
atoms and the 2v twin internal orbitals of the interior
atoms interact along the polyhedral surface to form
n bonding orbitals and n antibonding orbitals. (2) The
v unique internal orbitals of the interior vertex atoms
all interact with each other at the core of the
structure in a way which may be represented by the
complete graph Kv to give a single bonding orbital and
v - 1 antibonding orbitals. (3) The n - v unique
internal orbitals of the border atoms interact with
each other across the surface of the hole in a way
which may be represented by the complete graph Kn-v
to give a single bonding orbital and n - v - 1
antibonding orbitals.

The above interactions in nido systems of the first
two types correspond to the interactions found in the
closed deltahedral systems discussed in the previous
section, whereas the interactions of the third type can
only occur in polyhedra containing at least one hole
such as the nonpyramidal nido systems. Further-
more, the values of v and n - v in the second and
third types of interactions are immaterial as long as
they both are greater than 1, since any complete

Figure 15. Conversion of an icosahedral carborane to an icosahedral metallacarborane by removal of a BH vertex followed
by introduction of a transition-metal (C5H5Co) vertex.
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graph Ki (i > 1) has exactly one positive eigenvalue,
namely, i - 1. The total number of skeletal bonding
orbitals in nonpyramidal nido systems with n ver-
tices generated by interactions of the three types
listed above are n, 1, and 1, respectively, leading to
a total of n + 2 bonding orbitals holding 2n + 4
skeletal electrons in accord with experimental ob-
servations.

Pyramidal nido polyhedra having only one interior
vertex require a somewhat different treatment be-
cause the eigenvalue of the 1-vertex no-edge complete
graph K1 is 0, leading to ambiguous results for the
second type of interaction listed above. This difficulty
can be circumvented by realizing that the only types
of pyramids relevant to polyhedral borane chemistry
are square pyramids, pentagonal pyramids, and
hexagonal pyramids, and bonding schemes for these
types of pyramids can be constructed which are
completely analogous to well-known139 transition-
metal complexes of cyclobutadiene, cyclopentadienyl,
and benzene, respectively. In applying this analogy,
the interior vertex atom plays the role of the transi-
tion metal and the planar polygon of the border
vertex atoms plays the role of the planar polygonal
ring in the metal complexes. Furthermore, the n - 1
unique internal orbitals of the border vertex atoms
interact cyclically leading to three “submolecular”
orbitals which may be used for bonding to the single
interior vertex atom as represented by the three
nonnegative eigenvalues of the corresponding Cn-1
cyclic graph (n ) 5, 6, 7). Of these three polygonal
orbitals, one orbital, the A1 orbital, has no nodes
perpendicular to the polygonal plane whereas the
other two remaining orbitals, the degenerate E
orbitals, each have one node perpendicular to the
polygonal plane with the two nodes from pair of
degenerate E orbitals being mutually perpendicular.
This method is equivalent to the Jemmis method69

of dissecting pyramids into “rings” and “caps” (section
II.F).

The following three interactions are used to gener-
ate the skeletal bonding orbitals in nido pyramids.
(1) The 2(n - 1) twin internal orbitals of the border
atoms interact along the edges of the base of the
pyramid to form n - 1 bonding orbitals and n - 1
antibonding orbitals analogous to the σ bonding and
σ* antibonding orbitals, respectively, of planar poly-
gonal hydrocarbons. (2) The unique internal orbital
of the single interior vertex atom (the apex of the
pyramid) interacts with the A1 orbital to give one
bonding orbital and one antibonding orbital. (3) The
twin internal orbitals of the apex of the pyramid
interact with the two orthogonal E orbitals in two
separate pairwise interactions to give two bonding
and two antibonding orbitals.

The total numbers of skeletal bonding orbitals in
pyramidal nido systems generated by these three
interactions are n - 1, 1, and 2, respectively, leading
to a total of n + 2 bonding orbitals holding 2n + 4
skeletal electrons. Thus, the graph-theoretical treat-
ment of nonpyramidal and pyramidal nido polyhedra
with n vertices leads to the prediction of the same
numbers of skeletal bonding orbitals, namely, n + 2,
in accord with experimental observations. However,

the partitionings of these bonding orbitals are dif-
ferent for the two types of nido systems, namely, (n,
1, 1) for the nonpyramidal systems and (n - 1, 1, 2)
for the pyramidal systems.

The process of polyhedral puncture, which forms
nido polyhedra with one hole and 2n + 4 skeletal
electrons from closed deltahedra with 2n + 2 skeletal
electrons, can be continued further to give polyhedral
fragments containing two or more holes or one larger
hole. Such boranes having 2n + 6 and 2n + 8 skeletal
electrons are called arachno and hypho boranes,
respectively (Figure 14). Formation of a new hole by
such polyhedral puncture splits the complete graph
formed by interactions at the polyhedral core between
the unique internal orbitals of the interior vertex
atoms into two smaller complete graphs. One of these
new complete graphs involves interaction at the
polyhedral core between the unique internal orbitals
of the vertex atoms which are still interior atoms
after creation of the new hole or expansion of the
existing hole. The second new complete graph in-
volves interaction above the newly created hole
between the unique internal orbitals of the vertex
atoms which have become border atoms of the newly
created hole. Since each new complete graph con-
tributes exactly one new skeletal bonding orbital to
the polyhedral system, each application of polyhedral
puncture to give a stable system requires addition
of two skeletal electrons.

B. Metallaboranes: the “Isocloso Problem”
The boron vertices in borane polyhedra can be

replaced with isolobal transition-metal vertices bear-
ing sufficient external ligands, e.g., carbonyl groups
or perhapto planar polygons, to give the transition
metal a suitable electronic configuration, most fre-
quently the 18-electron configuration of the next
noble gas. Examples of transition-metal vertices
isoelectronic and isolobal with a BH vertex and thus
donors of two skeletal electrons include Fe(CO)3, (η6-
C6H6)Fe, and (η5-C5H5)Co as well as corresponding
derivatives of their heavier congeners. Similarly
Co(CO)3, (η6-C6H6)Co, and (η5-C5H5)Ni and corre-
sponding derivatives of their heavier congeners are
donors of three skeletal electrons similar to a CH
vertex in polyhedral carboranes. The hydrogen atoms
in BH and CH vertices as well as in the η5-C5H5 and
η6-C6H6 rings bonded to transition-metal vertices in
metallaboranes can be replaced by other monovalent
groups, such as halogen, alkyl, aryl, etc., and the
carbonyl groups in M(CO)3 can be replaced by other
two-electron donor ligands such as tertiary phos-
phines or isocyanides.

Deltahedral metallaboranes having n vertices,
besides being derived from the corresponding delta-
hedral boranes by suitable isolobal/isoelectronic sub-
stitution of transition-metal vertices for boron ver-
tices as noted above, can also be regarded as metal
complexes of nido borane ligands with n - 1 vertices.
For example, removal of one BH vertex from the
icosahedral carborane C2B10H12 (formally as BH2+)
gives an 11-vertex nido species, C2B9H11

2-, having an
open pentagonal face (Figure 15). Complexing a
transition metal (e.g., a C5H5Co unit) to the open
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pentagonal face of C2B9H11
2- reconstitutes the icosa-

hedral structure in the form of a metallacarborane
(i.e., C5H5CoC2B9H11 in the case of a C5H5Co vertex).
The bonding of the cobalt atom to the pentagonal face
of C2B9H11

2- is analogous to the pentahapto bonding
of a cobalt atom to pentagonal C5H5

-.
Initially it was assumed that the polyhedra in

metallaboranes would be the same as the polyhedra
in isoelectronic metal-free boranes using the isolobal/
isoelectronic relationships noted above. However, as
metallaborane chemistry was developed further,
particularly by Kennedy and co-workers,140 a variety
of deltahedral metallaborane structures were discov-
ered based on deltahedra topologically distinct from
the deltahedra found in simple metal-free boranes
and carboranes. Of particular interest was the dis-
covery of 9- and 10-vertex metallaboranes based on
deltahedra with the transition metal at a degree 6

vertex whereas the corresponding metal-free delta-
hedron has only degree 4 and 5 vertices. Even more
interesting was the observation that such “anoma-
lous” metallaborane deltahedra are also “disobedient”
in having electron counts corresponding to only 2n
skeletal electrons rather than the expected 2n + 2
skeletal electrons. Such metallaborane deltahedra
are called isocloso structures and can be derived from
the closo deltahedron with the same number of
vertices by diamond-square-diamond (dsd) re-
arrangements (Figure 16). In such dsd rearrange-
ments the intermediate polyhedron with a single
quadrilateral face looks like a nido polyhedron but
one obtained by removal of a vertex of degree 4 rather
than a larger degree from a deltahedron having n +
1 vertices. However, such apparent nido polyhedra
do not have the expected 2n + 4 skeletal electrons
but instead have only 2n + 2 skeletal electrons and

Figure 16. Diamond-square-diamond (dsd) processes leading from 9-, 10-, and 11-vertex closo 9-vertex deltahedra to
the corresponding isocloso deltahedra. For clarity, the degree 4 and 6 vertices are indicated by solid squares (9) and six-
pointed asterisks (*), respectively, and the edges broken in the d f s stage of the dsd process are indicated by hatched
lines.
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accordingly have been called isonido polyhedra. The
11-vertex closo/isocloso pair is different from the 9-
and 10-vertex closo/isocloso pairs in that the 11-
vertex closo and isocloso polyhedra are topologically
equivalent with a single degree 6 vertex even though
they are related by a diamond-square-diamond
rearrangement like the 9- and 10-vertex closo/isocloso
deltahedral pairs. This relates to the topological
impossibility of an 11-vertex deltahedron having only
degree 4 and 5 vertices,23 so that the favored 11-
vertex deltahedron for the metal-free boranes such
as B11H11

2- and C2B9H11 is the edge-coalesced icosa-
hedron with a single degree 6 vertex (Figure 3).

An interesting closo/isocloso pair of 10-vertex met-
allacarboranes was discovered by Hawthorne and co-
workers in the 1970s (Figure 17) before the existence
of isocloso deltahedra was recognized. Reduction of
1,7-C2B6H8 with sodium naphthalenide followed by
addition of NaC5H5 and CoCl2 gave a mixture from
which a 7% yield of 2,9,1,10-(C5H5Co)2C2B6H8 could
be isolated.141 X-ray diffraction of this compound
indicated a structure (Figure 17) based on the 10-
vertex closo deltahedron, namely, the 4,4-bicapped
square antiprism (Figure 3), with the carbon atoms
at the two degree 4 (axial) vertices and the cobalt
atoms at degree 5 vertices142 in accord with the 22
skeletal electrons () 2n + 2 for n ) 10) expected for
such a closo structure noting that C5H5Co vertices
are donors of two skeletal electrons each. In contrast
to this result, reduction of 4,5-C2B7H9 with sodium
followed by addition of NaC5H5 and FeCl2 gave a
mixture from which a 5% yield of 1,6,2,3-(C5H5-
Fe)2C2B6H8 could be isolated.143 The substitution of
two cobalt atoms by iron atoms in a polyhedral
cluster with otherwise the same stoichiometry and
bonding to external groups reduces the number of
skeletal electrons by two so that 1,6,2,3-(C5H5-
Fe)2C2B6H8 has 20 skeletal electrons () 2n for n )
10), which is now recognized to be correct for isocloso
geometry. The structure of 1,6,2,3-(C5H5Fe)2C2B6H8
found by X-ray diffraction143 corresponds to what is
now recognized as the 10-vertex isocloso deltahedron
with one iron atom at the degree 6 vertex and the
other iron atom at a degree 5 vertex adjacent to the
degree 6 vertex and with carbon atoms at two of the
three degree 4 vertices (Figure 17). Since isocloso
deltahedra were not recognized at the time of this
experimental work, Hawthorne and co-workers143 as
well as subsequently Nishimura144 rationalized the

different geometry of the cobalt and iron complexes
by assuming that the C5H5Fe vertices each donated
the same two skeletal electrons as a C5H5Co vertex
but that there was an Fe-Fe bond in addition to the
usual 10-vertex deltahedral skeletal bonding to give
the iron atoms the favored 18-electron configuration.
A distortion arising from this extra Fe-Fe bond was
assumed to account for the observed change in the
deltahedral geometry in going from the cobalt to the
iron complex of the same stoichiometry except for the
change in the transition-metal atoms. With the
additional information on metallaborane structures
in the quarter century since this experimental work
by Hawthorne and co-workers,141-143 we can now
interpret 2,9,1,10-(C5H5Co)2C2B6H8 as a closo delta-
hedral complex and 1,6,2,3-(C5H5Fe)2C2B6H8 as an
isocloso deltahedral complex in accord with their
respective skeletal electron counts.

The reason for the anomalous electron counts in
the isocloso structures (i.e., two electrons less than
the n + 2 skeletal electrons expected from “Wade’s
rules”)25 has been the cause for some speculation.
Ideas to rationalize this anomaly include postulation
of Jahn-Teller distortions removing orbital degen-
eracies in the HOMO/LUMO region145,146 and postu-
lating four-orbital rather than the usual three-orbital
involvement of the transition-metal vertex to provide
the “extra” electron pair.

A more direct rationalization for the anomalous
electron counts in isocloso deltahedra describes the
chemical bonding topology in isocloso deltahedra in
terms of exclusively 3c-2e B-B-B bonds in delta-
hedral faces without any 2c-2e bonds or two-electron
bonds involving more than three orbitals such as the
n-center two-electron core bonds in the deltahedral
boranes BnHn

2- (6 e n e 12) discussed above (section
II.D).147 Thus, consider the bonding topology in a an
isocloso metallaborane deltahedron with n vertices,
which can be shown by Euler’s theorem55 to have
2n - 4 faces and 3n - 6 edges such as the corre-
sponding closo deltahedron with the same number
of vertices. If each vertex (e.g., a neutral BH vertex
or isoelectronic/isolobal equivalent) contributes three
skeletal (internal) orbitals and two skeletal electrons
(i.e., a 2n skeletal electron system), then the numbers
of skeletal orbitals and electrons are correct for 3c-
2e bonds in n of the 2n - 4 faces leaving n - 4 faces
without 3c-2e bonds.

A more detailed understanding of this chemical
bonding topology for isocloso metallaboranes can be
obtained by removing the metal vertex leaving a
metal-free borane unit with an open hexagonal face
like a nido structure but a skeletal electron count like
a closo structure. Thus, consider the 11-vertex ru-
thenium complexes of the type (arene)RuB10H10
(arene ) p-cymene, hexamethylbenzene, etc.),148 which
may be considered to have 22 skeletal electrons, two
from each vertex. The ruthenium atom in the (arene)-
Ru vertex may be considered to have a typical +2
formal oxidation state like the stable [(arene)RuIICl2]2
compounds so that removal of this vertex as (arene)-
Ru2+ leaves behind a B10H10

2- ligand with all of the
22 skeletal electrons. These skeletal electrons are
used to form eight 3c-2e B-B-B bonds in 8 of the

Figure 17. The 10-vertex metallacarborane deltahedra in
the (C5H5M)2C2B6H8 (M ) Fe, Co) complexes discovered
by Hawthorne and co-workers in the 1970s showing the
contrast between the closo dicobalt derivative with 22
skeletal electrons and the isocloso diiron derivative with
only 20 skeletal electrons. Hydrogen atoms on the boron
and carbon atoms and cyclopentadienyl rings on the metal
atoms are not shown.

Polyhedral Boranes and Related Molecules Chemical Reviews, 2001, Vol. 101, No. 5 1145



12 triangular faces of the open B10H10
2- unit and

three 2c-2e B-B bonds in alternating edges of the
open hexagonal face similar to the alternating CdC
double bonds in a Kekulé structure of benzene
(Figure 18). Reconstituting the isocloso metalla-
borane (arene)RuB10H10 from the open B10H10

2- ligand
with this bonding topology and the (arene)Ru2+

vertex with three internal orbitals converts the 2c-
2e bonds on the open hexagonal face of B10H10

2- into
3c-2e bonds leading to 11 3c-2e bonds and no 2c-2e
bonds in the skeletal bonding framework of the
reconstituted (arene)RuB10H10 structure in accord
with its 22 skeletal electrons provided by the 33
internal orbitals of the 11 vertex atoms. The B10H10

2-

dianion ligand in (arene)RuB10H10, which can be
considered as a hexahapto ligand, can be seen to be
analogous to an arene ligand with the three 2c-2e
B-B bonds on alternating edges of the open hexagon
of B10H10

2- functioning like the three alternating
CdC double bonds of benzene in metal complex-
ation.

Isocloso metallaboranes with 9 and 10 vertices can
be considered analogously to be transition-metal
derivatives of open B8H8

2- and B9H9
2- anions with

one hexagonal face and 2n - 10 triangular faces
(Figure 18). However, in many cases one or more of
the external hydrogen atoms in the open Bn-1Hn-1

2-

ligand are replaced by either Lewis base ligands (e.g.,
phosphines or isocyanides) or monovalent groups
[e.g., Cl in (Me3P)2HIrB8H7Cl (ref 149)] and/or a boron
atom is replaced by a carbon atom with the necessary
adjustments in electron count. In all cases the open

Bn-1Hn-1
2- ligand (Figure 18) can be regarded as a

hexahapto ligand toward the transition-metal vertex
with metal-ligand bonding similar to arene metal
complexes. Furthermore, the triangular faces of the
open Bn-1Hn-1

2- ligand containing 3c-2e B-B-B
bonds (i.e., the shaded faces in Figure 18) are situated
so that three such shaded faces meet at each interior
vertex and two such shaded faces meet at each vertex
of the open hexagon in accord with the availability
of three internal orbitals from each vertex atom but
the involvement of one internal orbital from the open
hexagon vertex boron atoms in the hexahapto bond-
ing of the Bn-1Hn-1

2- ligand to the transition metal.

C. Boron Allotropes: The Truncated Icosahedron
in a Boron Structure

Elemental boron exists in a number of allotropic
forms of which four (two rhombohedral forms and two
tetragonal forms) are well established (Table 5).150-152

The structures of all of these allotropic forms of boron
are based on various ways of joining B12 icosahedra
using the external orbitals on each boron atom. The
chemical bonding topology in these B12 icosahedra
appears to be exactly analogous to that found in the
discrete B12H12

2- anion, so that elemental boron
provides an example of three-dimensional aromatic-
ity in a refractory material.

The structures of the two rhombohedral forms of
elemental boron (Table 5) are of interest in illustrat-
ing what can happen when icosahedra are packed
into an infinite three-dimensional lattice. In these
rhombohedral structures the local symmetry of a B12
icosahedron is reduced from Ih to D3d because of the
loss of the 5-fold rotation axis when packing icosa-
hedra into a crystal lattice. The 12 vertices of an
icosahedron, which are all equivalent under Ih local
symmetry, are split under D3d local symmetry into
two nonequivalent sets of six vertices each (Figure
19a). The six rhombohedral vertices (labeled R in
Figure 19a) define the directions of the rhombohedral
axes. The six equatorial vertices (labeled E in Figure
19a) lie in a staggered belt around the equator of the

Figure 18. (a) Comparison of the structures of the closo
boranes BnHn

2- (n ) 8, 9, 10) with the BnHn
2- ligands

containing an open hexagonal face found in isocloso metal
complexes. (b) Viable arrangements of 3c-2e B-B-B bonds
in the triangular faces of the open BnHn

2- ligands; the
shaded faces contain the 3c-2e B-B-B bonds.

Table 5. Well-Characterized Allotropes of Elemental
Boron

allotrope

atoms
per

unit cell
structural units
in the unit cell

R-rhombohedral boron 12 one B12 icosahedron
â-rhombohedral boron 105 one B84 unit, two B10 groups,

and one B atom
R-tetragonal boron 50 four B12 icosahedra and two

B atoms
â-tetragonal boron 188 B21‚2B12‚B2.5

Table 6. Analogies between the Packing of Units of
Icosahedral Symmetry in r- and â-Rhombohedral
Boron

R â

icosahedral unit icosahedron truncated icosahedron
number of vertices 12 60
rhombohedral linkages two-center bonds icosahedral cavities
equatorial linkages three-center bonds ideal B28 polyhedron

from three fused
icosahedra
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icosahedron. The six rhombohedral and six equatorial
vertices form prolate (elongated) and oblate (flat-
tened) trigonal antiprisms, respectively.

In the simple (R) rhombohedral allotrope of boron
(Table 5), all boron atoms are part of discrete icosa-
hedra. In a given B12 icosahedron, the external
orbitals of the rhombohedral boron atoms form 2c-
2e bonds with rhombohedral boron atoms of an
adjacent B12 icosahedron and the external orbitals
of the equatorial boron atoms form 3c-2e bonds with
equatorial boron atoms of two adjacent B12 icosahe-
dra. Of the available (12)(3) ) 36 electrons from an
individual B12 icosahedron in R-rhombohedral boron,
26 electrons are used for the skeletal bonding (one
12-center core bond and 12 surface bonds) and the
remaining 10 electrons are parts of external bonds,
namely, 1/2 of six 2c-2e bonds from the rhombohedral
boron atoms and 1/3 of six 3c-2e bonds from the
equatorial boron atoms. Thus, R-rhombohedral boron
has a closed-shell electronic configuration just like
B12H12

2-. This bonding scheme for R-rhombohedral
boron is supported by experimental determination of
its electron density distribution using the maximum
entropy method with synchrotron radiation powder
data.153

The structure of the energetically more favorable
â-rhombohedral boron avoids the 3c-2e intericosa-
hedral bonding of R-rhombohedral boron and thus is
energetically more favorable. The structure of â-rhom-
bohedral boron may be described as a rhombohedral
packing of B84 polyhedral networks known as Samson
complexes (Figure 19b).154 These B84 Samson com-
plexes have an outer B60 surface with the same
truncated icosahedral geometry that has become
famous in recent years in the C60 fullerene structure.
Inside the B60 truncated icosahedron surfaces of the
Samson complexes are two nested B12 icosahedra
with the inner B12 icosahedra being similar to the
B12 icosahedra in R-rhombohedral boron or B12H12

2-.
The truncated icosahedral surfaces of the B84

Samson complexes in the â-rhombohedral boron
structure have 12 pentagonal faces which are the
bases of 12 pentagonal pyramidal cavities (indenta-
tions or “dimples”) where the apices correspond to
the 12 vertices of the Samson complex of the larger
of the two internal icosahedra (Figure 19b).155 These
12 pentagonal pyramidal cavities, which necessarily
are located at the vertices of a large icosahedron, can
be partitioned into a set of six rhombohedral cavities
and a set of six equatorial cavities just as the 12
vertices of a B12 icosahedron in R-rhombohedral
boron can be partitioned into sets of six rhombohedral
and six equatorial vertices as noted above. The
rhombohedral cavities overlap with the rhombo-
hedral cavities of an adjacent Samson complex in a
staggered manner to form new icosahedral cavities
analogous to the 2c-2e external bonds of R-rhombo-
hedral boron. The equatorial cavities overlap with the
equatorial cavities of two adjacent Samson complexes
by means of an additional B10 unit to form new
polyhedral cavities with 28 vertices (Figure 19c).
These B28 cavities have local C3v symmetry and are
constructed by fusion of three icosahedra so that in
each icosahedron one vertex is shared by all three
icosahedra and four vertices are shared by two of
the icosahedra so that 3(B7B4/2B1/3) ) B28. The struc-
tures of R-rhombohedral and â-rhombohedral boron
are quite analogous as illustrated in Table 5, where
the B12 icosahedra in R-rhombohedral boron play
roles analogous to the B60 truncated icosahedra in
â-rhombohedral boron. Despite the complexity of the
structure and bonding model for â-rhombohedral
boron with the added complication of partial oc-
cupancies of some of the sites in the B28 cavities, the
number of skeletal electrons works out to be within
1% of that required by reasonable bonding models
based on the observed geometry.155

Bullett156 performed some electronic structural
calculations on both R-rhombohedral and â-rhombo-
hedral boron as well as on the less well-characterized
R-tetragonal boron157 (Table 5). The results show that
a band picture can provide a description of the
bonding in these solids. The R-rhombohedral struc-
ture is found to produce semiconducting properties,
with an indirect band gap of 1.7 eV. The ordering of
bands was qualitatively interpreted in terms of the
skeletal molecular orbitals of a B12 icosahedron and
the 2c-2e and 3c-2e external bonds linking neighbor-
ing icosahedra in accord with the topological bonding

Figure 19. (a) Two views of the partitioning of the 12
vertices of a regular icosahedron into six rhombohedral
vertices (R) and six equatorial vertices (E) upon reduction
from Ih to D3d symmetry. (b) The Samson complex derived
from a truncated icosahedron, which is found in the
â-rhombohedral boron structure. (c) The 28-vertex polyhe-
dral cavities formed by overlap of the equatorial pentagonal
pyramidal cavities of three Samson complexes in the
â-rhombohedral boron structure.
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model discussed above. In the case of â-rhombohedral
boron, a forbidden gap of ∼2.7 eV was found to occur
in the spectrum of electron states. Some degree of
defect- or impurity-induced disorder appeared to be
essential to stabilize the structure, since the valence
band of the “ideal” structure can accommodate 320
electrons per B105 unit cell compared with the 315
electrons available. These calculations questioned the
suggested R-tetragonal modification of pure boron
(Table 5), since the electron deficit in the suggested
structure should be so severe that the presence of a
more electron-rich atom than boron such as carbon
or nitrogen would be required leading to stoichiom-
etries such as B50C2 and B50N2. Thus, the so-called
R-tetragonal boron is probably an impurity-stabilized
phase.

Computational studies based on density functional
theory have been used by Boustani to investigate a
variety of possible structures of elemental boron that
have not yet been realized experimentally. Small
boron clusters Bn (2 e n e 14)158,159 appear to prefer
structures based on planar or quasiplanar triangular
networks which can be considered to be fragments
of a planar surface or segments of the surface of a
sphere. Low-energy structures of larger boron clus-
ters, e.g., B21 and B24, can also consist of interpen-
etrating icosahedral structural units.160 Larger boron
aggregates such as quasiplanar surfaces161 and nano-
tubes162 also appear to form similar triangulated
networks. The fundamental building blocks of all of
these computationally discovered but not yet experi-
mentally realized structures of boron aggregates
consist of B6 pentagonal pyramids and B7 hexagonal
bipyramids having local environments of the central
vertices similar to the boron atoms at vertices of
degrees 5 and 6, respectively, of borane deltahedra
(e.g., Figure 3).163 The B6 pentagonal pyramids found
in Boustani’s structures for boron aggregates are also
similar to the pentagonal pyramidal cavities on the
surface of a Samson complex in â-rhombohedral
boron discussed above (Figure 19b).

D. Boron-Rich Metal Borides

The structures of binary metal borides are rela-
tively complicated.164-166 The metal borides with the
highest boron content, i.e., those with boron/metal
ratios of 4.0 or more, contain polyhedra of boron
atoms, e.g., B6 octahedra in MB4 and MB6 (M ) La),
B12 cuboctahedra in YB12, B12 icosahedra in NaB14.5
or C3B12, or B12(B12)12 “icosahedra of icosahedra” in
YB66 (Figures 8-3).167,168

The structures of a few of these boron-rich metal
borides were determined by X-ray diffraction long
before the discovery of any of the deltahedral borane
anions BnHn

2- (6 e n e 12). It is therefore not
surprising that the first computational studies on
boron deltahedra were performed on the deltahedra
in solid-state boride structures rather than the del-
tahedral borane anions. Thus, already in 1954,
Longuet-Higgins and Roberts13 showed that the B6
octahedra in the CaB6 structure, which are linked to
adjacent B6 octahedra through B-B 2c-2e external
bonds, are stable as the dianions [B6

2-]. In 1960

Lipscomb and Britton167 reported an extension of the
topological methods that they had developed for the
study of polyhedral boranes for the study of boron-
rich metal borides. They used the following approach.
(1) The boron framework is dissected into polyhedra
which are connected to each other by localized bonds,
occasionally with the use of multicentered orbitals.
(2) The skeletal bonding of the individual polyhedra
is then investigated leading to determination of their
MO energy parameters. (3) Electrons are transferred
from the more electropositive element, typically an
alkali metal, an alkaline-earth metal, or a lan-
thanide, to the boron framework until the bonding
orbitals are filled. (4) Excess valence electrons on the
metal atoms are regarded as metallic and presumed
to lead to metallic optical and electrical properties.

The band structures of some metal borides con-
taining B6 octahedra were subsequently studied by
Perkins, Armstrong, and Breeze.169 The alkaline-
earth metal hexaborides AeB6 (Ae ) Ca, Sr, Ba) were
shown to have small band gaps in accord with the
closed-shell nature of [B6

2-] in a solid-state structure
with each boron of a B6 octahedron linked through a
2c-2e bond to a boron atom in an adjacent B6
octahedron and thus isoelectronic with the discrete
ion B6H6

2-. Similarly, the metallic conductivity of
LaB6 was attributed to the extra electron remaining
on each lanthanum after filling the bonding orbitals
in the boron cages to give [B6

2-] structural units.
Typical metallic properties of LaB6 were investi-
gated by these authors,169 including the Hall coef-
ficient and the Fermi surface.

Boron icosahedra are also found in many boron-
rich borides of the most electropositive metals such
as Li, Na, Mg, and Al.170 An important structural unit
in such borides is B14

4-, which may be written more
precisely as (B12

2-)(B-)2. Thus, consider the magne-
sium boride Mg2B14 ) (Mg2+)2(B12

2-)(B-)2 (ref 171).
One-half of the external bonds from the B12 icosa-
hedra are direct bonds to other B12 icosahedra,
whereas the other half of these external bonds are
to the isolated boron atoms. Closely related struc-
tures are found in LiAlB14 (ref 172) and the so-called
“MgAlB14”. However, “MgAlB14” is actually MgAl2/3B14
because of partial occupancy of the aluminum sites
and thus can be formulated with the same B14

2- unit
as Mg2B14.173 A less closely related structure is
NaB14.5, which has two types of interstitial boron
atoms as well as the same B12

2- icosahedra.174,175

The lanthanides are also examples of electroposi-
tive metals that form boron-rich borides having boron
subnetworks constructed from B12 icosahedra. An
example of an extremely boron-rich metal boride is
YB66.176,177 The structure of YB66 is very complicated
with a unit cell containing approximately 24 yttrium
atoms and 1584 boron atoms. The majority of the
boron atoms (1248 ) (8)(156)) are contained in 13-
icosahedron units of 156 atoms each. In each 13-
icosahedron unit a central B12 icosahedron is sur-
rounded by 12 icosahedra leading to a B156 “icosa-
hedron of icosahedra”. The remaining boron atoms
are statistically distributed in channels that result
from the packing of the 13-icosahedron units and
from nonicosahedral cages that are not readily char-
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acterized. The complexity of this structure and the
uncertainty in the positions of the “interstitial” boron
atoms clearly preclude any serious attempts at
electron counting.

Another interesting boron-rich solid-state com-
pound is the refractory material boron carbide, which
exhibits stoichiometries between B4C () B12C3)178 and
B13C2.179 These materials have interesting structures
in which B12 icosahedra are linked by C2B4 six-
membered rings similar to the six-membered rings
in the planar graphite (Figure 20). Thus, the struc-
ture of B12C3 can be derived from the structure of
R-rhombohedral boron by replacement of the 3c-2e
bonds linking B12 icosahedra with the linear C3
bridging units. The planarity of the six-membered
C2B4 rings suggests “benzenoid-type” aromaticity.
Additional carbon (in B12C3) or boron (in B13C2) atoms
link the carbon atoms to form allene-like C3 or CBC
chains, respectively, in directions perpendicular to
the planes of the C2B4 rings. Thus, the structure of
B12C3 can be derived from the structure of R-rhom-
bohedral boron by replacement of the 3c-2e bonds
linking B12 icosahedra with the linear C3 bridging
units; computational studies156 lead to a direct band
gap of 3.8 eV relative to an indirect band gap of 1.7
eV for R-rhombohedral boron. The combination of the
very stable “aromatic” hexagonal C2B4 rings fused to
the likewise very stable B12 icosahedra can account
for the observed stability and strength of the B12C3
and B13C2 structures including the extreme hardness
and high melting points of these boron carbides.

E. Supraicosahedral Boranes

A question of interest in deltahedral borane chem-
istry is whether supraicosahedral boranes BnHn

2- (n
g 13) can be synthesized and whether the Frank-
Kasper polyhedra (Figure 11) are suitable models for
their structures. The 14-vertex supraicosahedral
metallacarborane (C5H5)2Co2B10C2H12 is known180

and has a structure based on the Frank-Kasper
bicapped hexagonal antiprism with the cobalt atoms
at the degree 6 vertices.

The first detailed theoretical study on the supra-
icosahedral boranes BnHn

2- (13 e n e 24) was
performed by Brown and Lipscomb,181 who investi-
gated possible deltahedra and performed simple SCF

calculations on the structures with up to 17 boron
atoms. The proposed structures were found to re-
semble solutions to problems of arranging objects
which repel one another on the surface of a sphere,
which were studied in the prequantum mechanics
days by the mathematician Föppl.182,183 The observed
deltahedra conform to the following generalizations.
(1) There may be boron atoms at a pole or both poles
and on latitudinal rings perpendicular to the polar
axis. (2) The latitudinal rings are rotated (twisted)
so that arrangements of boron atoms are not coinci-
dent between neighboring rings to minimize boron-
boron repulsion. (3) There exist special values of n
corresponding to special arrangements.

In subsequent work shortly after this original
report, Lipscomb and co-workers184,185 performed
partial retention of diatomic differential overlap
(PRDDO) calculations on these supraicosahedral
boranes. This work identified three examples of
supraicosahedral boranes, namely, B16H16

z-, B19H19
z-,

and B22H22
z-, where the dianions (i.e., z ) 2) were

found to undergo Jahn-Teller distortions. The full
molecular symmetries were obtained by considering
the structure to be a neutral one with only 2n skeletal
electrons.

These supraicosahedral boranes were subsequently
investigated by Fowler186 using the pairing principle
from tensor surface harmonic theory (section II.E).
The predicted anomalous electron counts for B16H16

z-,
B19H19

z-, and B22H22
z-, namely, 2n or 2n + 4 rather

than 2n + 2 skeletal electrons, were shown to be
forced by symmetry for either T or Td clusters with
an odd number of sets of four equivalent cage atoms
or Cm or Cmv (m g 3) clusters with an odd number of
cage atoms on the Cm axis.

More recently, the still experimentally unknown
supraicosahedral boranes BnHn

2- (n ) 13-17) were
evaluated by Schleyer, Najafian, and Mebel187 at the
B3LYP/6-31G* level of density functional theory.
Calculations of the nucleus-independent chemical
shifts suggested that all of these deltahedral boranes
should exhibit three-dimensional aromaticity. The
supraicosahedral boranes BnHn

2- (n ) 13-17) were
found to be thermodynamically more stable than the
subicosahedral boranes BnHn

2- (n ) 9-11) but less
stable than the icosahedral B12H12

2-, which has the
lowest energy on a per vertex basis of any of the
deltahedral boranes. The formation of B13H13

2- from
B12H12

2- was found to be especially unfavorable
thermodynamically, which may account for the fact
that no metal-free binary supraicosahedral boranes
are known. The geometry optimization in these
computations led to the Frank-Kasper polyhedra
(Figure 11) for B14H14

2- and B15H15
2- but not for

B16H16
2-, which had an optimized structure with two

square faces. This computational study suggests that
the supraicosahedral boranes BnHn

2- (n ) 13-17)
should be stable compounds, but a successful method
for their synthesis must find a way of avoiding being
trapped in the icosahedral B12H12

2- energy sink.
Recent calculations by McKee, Wang, and Schley-

er126 suggest the possibility of synthesizing neutral
supraicosahedral boranes of the type BnHn. In par-
ticular, a C3v capped icosahedral structure of neutral

Figure 20. Schematic representation of the boron carbide
structure showing the B12 icosahedra and the C2B4 six-
membered rings.
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B13H13 is expected to be exceptionally stable for a
supraicosahedral borane since it combines the high
stability of the B12H12

2- icosahedron with a BH2+ cap.
Recent work by Dopke, Powell, and Gaines188 led

to the synthesis of the dianion B19H19
2- by cage

expansion of M2[B18H20] (M ) Na, K) with H2BCl‚
SMe2 or HBCl2‚SMe2 in diethyl ether followed by
deprotonation of the intermediate B19H20

- ion with
Proton Sponge (1,8-bis(dimethylamino)naphthalene).
The intermediate B19H20

- ion as its crystalline
(Ph3P)2N+ salt was found by X-ray diffraction to
exhibit a structure consisting of edge-sharing nido
10- and 11-vertex fragments rather than a single 19-
vertex deltahedron. This result provides experimen-
tal evidence that structures containing large delta-
hedra for boranes BnHn

2- are not favorable relative
to structures constructed by fusing 10- to 12-vertex
polyhedra. The dianion B19H19

2- was not isolated as
a crystalline salt but instead characterized by 11B
NMR of the deprotonation reaction mixture.

An even larger deltahedral boron cage of interest
is B32H32

z-, since this is the first possible deltahedron
after B12H12

2- of icosahedral (Ih) symmetry. Such an
omnicapped dodecahedral structure for B32H32

z- turns
out to be the dual of the famous C60 truncated
icosahedron (Figure 21). This structure for B32H32

z-

was first proposed by Lipscomb and co-workers in
1978185 but subsequently studied in more detail by
Fowler and co-workers.186 A qualitative extended
Hückel treatment of B32H32

z- indicated an accidental
degeneracy at the nonbonding level from which
charges of +4, -2, or -8 might be deduced. Subse-
quent ab initio calculations189 using an STO-3G basis
set suggested that B32H32

z- is most stable as a
dianion similar to the smaller deltahedral boranes.
The absolute value of the energy of B32H32

2- per BH
unit was found to be intermediate between that of
the octahedral B6H6

2- and the icosahedral B12H12
2-.

V. Summary
Chemical bonding models based on graph theory

or tensor surface harmonic theory demonstrate the
analogy between the aromaticity in two-dimensional
planar polygonal hydrocarbons such as benzene and
that in three-dimensional deltahedral borane anions
of the type BnHn

2- (6 e n e 12). Such models are
supported both by diverse computational studies and
experimental determinations of electron density dis-
tribution. Related methods can be used to study the
chemical bonding in the boron polyhedra found in

other structures including neutral binary boron hy-
drides, metallaboranes, various allotropes of elemen-
tal boron, and boron-rich solid-state metal borides.
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